CHENYU ZHANG

Email: chenyu.zhang@columbia.edu Homepage: zcysxy.github.io

EDUCATION

Columbia University, New York, NY M.S. Data Science GPA: 4.00/4.00

Fudan University, Shanghai, CN B.S. Mathematics and Applied Mathematics Honors Student of Su Buqing Top Talent Program

PUBLICATIONS

- Chenyu Zhang, Xu Chen, and Xuan Di. A single online agent can efficiently learn mean field games. *Twenty-Seventh International Conference on Artificial Intelligence and Statistics*, 2024. [Under review; unanimously positive reviews]
- Chenyu Zhang, Han Wang, Aritra Mitra, and James Anderson. Finite-time analysis of on-policy heterogeneous federated reinforcement learning. *The Twelfth International Conference on Learning Representations*, 2024. [Under review; top 10% review score] [Preprint]
- Chenyu Zhang and Rujun Jiang. Riemannian adaptive regularized Newton methods with Hölder continuous Hessians. *Mathematics of Operations Research*, 2023. [Under review] [Preprint]
- Chenyu Zhang, Rufeng Xiao, Wen Huang, and Rujun Jiang. Riemannian trust region methods for SC¹ minimization. *Journal of Scientific Computing*, 2023. [Under review] [Preprint]

WORKING PAPERS

- Chenyu Zhang, Fuzhong Zhou, Xu Chen, and Xuan Di. Online learning for graphon mean field games. [Ready to submit to ICML 2024]
- Chenyu Zhang, Xu Chen, and Xuan Di. Single-agent model-free methods for learning mean field games with automatic stabilization and linear function approximation. [Ready to submit to ICML 2024]
- Chenyu Zhang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. On reward-free reinforcement learning for POMDPs with linear function approximation. [Ready to submit]

RESEARCH EXPERIENCE

Neural Networks

Research assistant, advised by Prof. John Wright

- Identified constraints within neural tangent kernels and designing data-aware kernels for analyzing fully-connected neural networks.
- Analyzed limitations of Transformers and designing tailored attention mechanisms with tensor kernels and invariant similarity weights.
- Conducted a comprehensive empirical study on intrinsic dimension estimation of patch manifolds and deriving the optimal patch size for various vision tasks.

Mean Field Games

Research assistant, advised by Prof. Sharon Di

• Pioneered the first fully online single-agent model-free methods for learning mean field games, complete with sample complexity guarantees.

2022 - 2023 (expected)

2018 - 2022

May 2023 - Present

May 2023 - Present

Dept. CEEM, Columbia University, NY

Dept. EE&APAM, Columbia University, NY

- Advanced the online methods to eliminate the reliance on forward-backward passes used in prior work, thereby obviating the need for supplementary stabilization techniques.
- Designed multi-agent systems capable of efficiently handling large heterogeneous populations.

Federated Reinforcement Learning	September 2022 - Present
Research assistant, advised by Prof. James Anders	on Dept. EE, Columbia University, NY
Co-advised by Prof. Aritra Mitra	Dept. ECE, North Carolina State University, NC
• Developed a novel on-policy federated reinforcement	learning method and established its finite-time error

bounds, demonstrating its linear convergence speedups with the presence of environmental heterogeneity.Conducted three simulations to corroborate the theoretical results and showcase the adaptability and robustness of the proposed methods.

October 2021 - September 2022

Dept. Data Science, Fudan University, CN

Dept. Mathematics, Xiamen University, CN

Nonsmooth Nonconvex Manifold Optimization

Research assistant, advised by Prof. Rujun Jiang Co-advised by Prof. Wen Huang

- Developed the first Riemannian trust-region method tailored for minimizing nonconvex functions on manifolds with a semismooth gradient field, complete with a comprehensive convergence analysis including global convergence and superlinear local convergence rate.
- Implemented the semismooth Riemannian trust-region method in solving augmented Lagrangian method subproblems on manifolds, demonstrating its superiority through two numerical experiments.
- Extended the methodology to formulate the Riemannian adaptive regularized Newton methods framework and established its sharp worst-case iteration and operation complexities.

Reinforcement Learning with Partial Observa	ability	March 2021 -	January 2022
Research assistant, advised by Prof. Zhaoran Wang	Dept. of IEMS&CS,	Northwestern	University, IL
Co-advised by Prof. Zhuoran Yang	Dept. of Stat&Data S	Science, Yale U	Vniversity, CT

- Devised an innovative exploration mechanism to handle partial observability without reward feedback.
- Enhanced the mechanism by integrating linear function approximation, enabling its application to large and potentially infinite observation and state spaces.

RELEVANT COURSEWORK

Graduate Courses Machine Learning High-Dimensional Probability* Modern Control Theory* Exploratory Data Analysis	A A A+ A+	Reinfo Proba Algori Comp	brceme bility a ithms f outer Sy	nt Learning [*] and Statistics for Data Science or Data Science ystems	$\begin{array}{c} \mathrm{A} + \\ \mathrm{A} + \\ \mathrm{A} + \\ \mathrm{A} \end{array}$
Selected Undergraduate Course	es				
Numerical Linear Algebra and Opti	$mization^{\dagger}$	A	4	Deep Learning	А
Numerical Solution to Differential E	Equations	A	4	Methods of Optimization	А
Functions of Complex Variable		A	4	Probability Theory	А
An Introduction to Differential Manifolds [†]		A	4-	Advanced Algebra	А
Computational Thinking		A	1	Fundamentals of Mechanics	А
Selected Seminars					
Matrix Analysis		С	Convex Optimization		
Heuristic Optimization Algorithms		Complex Analysis			
Advanced Mathematical Analysis		Principles of Mathematical Analysis			
Global Differential Geometry		Differential Manifolds and Differential Topology			
Differential Geometry of Curves and	l Surfaces	Non-Euclidean Geometry and Point Set Topology			

*Ph.D. level courses

[†]Honors courses

TEACHING EXPERIENCE

COMS 4771 Machine Learning	Fall 2023
<i>Teaching assistant</i> , advised by Prof. Daniel Hsu	Dept. CS, Columbia University, NY
ORCS 4529 Reinforcement Learning	Fall 2023
<i>Teaching assistant</i> , advised by Prof. Shipra Agrawal	Dept. IEOR, Columbia University, NY
EEOR 4650 Convex Optimization	Fall 2023
<i>Teaching assistant</i> , advised by Prof. James Anderson	Dept. EE, Columbia University, NY
CSOR 4231 Analysis of Algorithms	Spring 2023
<i>Teaching assistant</i> , advised by Prof. Eleni Drinea	Dept. CS, Columbia University, NY

SCHOLARSHIP & AWARD

• Honors Student of Top Talent Program, Fudan University 20				
• Undergraduate Merit Scholarship, Fudan University 2018-2019,	2019-2020, 2020-2021, 2021-2022			
• Undergraduate Major Scholarship, Fudan University	2018-2019, 2019-2020, 2020-2021			
• The Chinese Mathematics Competitions - Second Class Award	2019			
• The Chinese Physics Competitions - Second Class Award	2019			
• Freshman Scholarship, Fudan University	2018			

INVITED TALKS

- "A Semismooth Trust-Region Augmented Lagrangian Method for Nonsmooth Nonconvex Optimization on Riemannian Manifolds," Undergraduate Research Talks, Fudan University, 2022.
- "Intrinsic Dimension Estimation for Patch Manifolds," Data Science Institute Lightning Talks, Columbia University, 2023.