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Abstract
We propose a discrete-time graphon game for-
mulation on continuous state and action spaces
using a representative player to study stochas-
tic games with heterogeneous interaction among
agents. This formulation admits both concep-
tual and mathematical advantages, compared to a
widely adopted formulation using a continuum of
players. We prove the existence and uniqueness of
the graphon equilibrium with mild assumptions,
and show that this equilibrium can be used to con-
struct an approximate solution for the finite player
game, which is challenging to analyze and solve
due to curse of dimensionality. An online oracle-
free learning algorithm is developed to solve the
equilibrium numerically, and sample complexity
analysis is provided for its convergence.

1. Introduction
Many real-world applications, such as flocking (Perrin et al.,
2021), epidemiology (Cui et al., 2022), and autonomous
driving (Huang et al., 2020) involve multiagent systems,
where agents optimize individual cumulative rewards by
selecting sequential actions in an (in)finite horizon, while
interacting strategically among one another. In discrete-
time, such finite player games form Markov games (Littman,
1994; Solan & Vieille, 2015; Yang et al., 2018b). At a Nash
equilibrium (NE), nobody can improve her payoff by unilat-
erally switching her action policies. The NE is challenging
to solve when the agent size gets larger. To address such a
challenge, mean-field formulations are proposed to model
individuals interacting with others only via an aggregate
population.
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A school of researchers define a new type of games, namely,
mean fields games (MFG) (Lasry & Lions, 2007; Huang
et al., 2006) that describe the limiting behavior of its cor-
responding finite player game as the number of players is
large, assuming that the interaction among players are ho-
mogeneous.

As a generalization to MFGs, graphon mean field games
(GMFG or graphon games) are developed (Caines & Huang,
2021; Gao et al., 2021; Aurell et al., 2022; Tangpi & Zhou,
2023; Cui & Koeppl, 2022) to tackle the limiting behavior of
finite player games with heterogeneous agents who interact
asymmetrically, deemed as games on networks. GMFGs
cover a broader range of models and applications, as it
allows infinitely many distinct types of player with flexible
heterogeneous interaction, which are normally modeled by
graphons, a natural limit of finite graphs when the number
of vertices goes to infinity.

Because GMFGs may not be solved explicitly in general, re-
cent years have seen a growing trend of using learning meth-
ods for equilibria. Compared to abundant studies on learning
MFG (Yang et al., 2018a; Guo et al., 2019; Cardaliaguet
& Hadikhanloo, 2015; Elie et al., 2020; Perrin et al., 2020;
2021; 2022; Lauriere et al., 2022; Chen et al., 2023a;b),
learning on graphon games (Cui & Koeppl, 2022; Zhang
et al., 2023) is relatively understudied.

A major roadblock in learning GMFG lies in the fact that
there is no consensus on what a mathematically tractable
formulation of GMFG should be, since it is not straightfor-
ward to describe the limiting behavior of large number of
heterogeneous players. To the best of our knowledge, there
are two types of formulations. The first type, also the widely
adopted one, models a game for uncountably infinite play-
ers with distinct types (Caines & Huang, 2021), so-called
“continuum-player” games (Carmona et al., 2021).

Unfortunately, this formulation suffers from limitations.
Theoretically, the mapping from players’ types to state dy-
namic is not measurable under the usual σ-algebra, which
potentially pose challenges in analytical investigation of
solution properties (Appendix B.2); And practically, it is
difficult to develop an algorithm that directly solves a sys-
tem of optimal control problems for a continuum of players.
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Table 1. Comparison of GMFGs
Reference Formulation Assumptions Analysis Algorithms

Perspective Player-type Time domain Graphon
State

action space Uniqueness
Approx
Eqbm Oracle-free

Complexity
analysis

(Cui & Koeppl, 2022) Continuum Discrete Continuous Finite ✗ ✓ ✗ ✗

(Zhang et al., 2023) Continuum Discrete Continuous Finite ✗ ✗ ✗ ✗

(Lacker & Soret, 2022) Representative Continuous General Rd ✓ ✓ NA NA
This paper Representative Discrete General Rd ✓ ✓ ✓ ✓

Moreover, these studies could lack consistency between the
formulations (that model infinitely many players) and the
algorithms (that only sample a single representative agent).

To tackle the aforementioned challenges, a second kind of
formulation refers to a generic representative player who
represents all types of agents while interacting with the
aggregate population (Lacker & Soret, 2022). This formu-
lation is amenable to theoretical guarantees and ease the
algorithmic design and implementation.

In this paper, we study discrete-time graphon games of
the second formulation with rigorous analysis and learning
methods. We start from finite player games to motivate
graphon games, which in turn provide approximate equilibra
to finite games in dense interaction networks. Subsequently,
GMFG always refer to representative-player graphon game,
unless otherwise specified.
Related work. Tab. 1 compares the most relevant studies
on learning GMFGs. Continuum-player formulation: In
discrete time regime, Cui & Koeppl (2022) showed exis-
tence and approximate equilibrium under Lipschitz tran-
sition kernel and graphon, and Zhang et al. (2023) only
showed the existence of GMFGs with entropic regulariza-
tion. Both studies assumed access to an oracle that returns
the population dynamics, and the latter further assumes
access to an action-value function oracle that returns the op-
timal policies. Under these assumptions, Zhang et al. (2023)
provides a convergence rate of their algorithm, while Cui &
Koeppl (2022) only shows the asymptotic convergence. In
continuous time regime, Caines & Huang (2021) focused on
finite networks where each vertex represents a population.
Gao et al. (2021); Aurell et al. (2022); Tangpi & Zhou (2023)
studied linear quadratic games, and the latter two adopted
rich Fubini extension to address the measurability issue.
Representative-player formulation: As the establisher
and the only work to the best of our knowledge, Lacker &
Soret (2022) rigorously studied the equilibrium existence
uniqueness and approximate equilibrium in continuous-time,
with no discussion in algorithm implementation.

Contributions. Our major contributions are:
• As opposed to the widely used formulation of GMFG with

a continuum of players, we offer a new formulation with
only one representative player, which inherits the spirit
of classic MFGs, and more importantly, provide technical
advantages (see Appendix B.2).

• Our model framework is general in terms of state-action
space and transition kernel. We allow the state and action
spaces to be Euclidean spaces, as opposed to the finite
state-action space. The state dynamic transitions and
reward functions are allowed to be time-variant.

• We present comprehensive analysis of mathematical prop-
erties of our GMFG, namely, equilibrium existence,
uniqueness and approximate equilibrium convergence.
All rely on weaker assumptions than those used in ex-
isting studies, such as continuous graphon and Lipschitz
state transition dynamics. See Secs. 4 and D-F.

• We provide the first fully online oracle-free learning
scheme for solving the equilibrium, and justify its ef-
ficiency with a sample complexity analysis. See Sec. 5.

2. Preliminaries
2.1. Notations
Let E be any Polish space (complete separable metric topo-
logical space). We use P(E) to represent all the probability
measures on E equipped with the weak topology, with⇒
being the weak convergence. LetM+(E) denote the space
of nonnegative Borel measures of finite variation. Denote
∥ · ∥TV the total variation norm. Given a random element
X valued in E, let L(X) ∈ P(E) be the probabilistic law
(distribution) of X . For any µ ∈ P(E), we write X ∼ µ if
L(X) = µ. For simplicity, we represent the integral with
⟨µ, ϕ⟩ =

∫
E
ϕdµ for µ ∈M+(E) and measurable ϕ.

Let Punif([0, 1] × E) denote a measure on product space
[0, 1]× E with uniform first marginal. We always consider
E to be a regular space, and thus each element µ admits
a disintegration duµu(dx) where µu(dx) is a Lebesgue al-
most every uniquely defined kernel [0, 1]→ E.

2.2. Graphon

2.2.1. DEFINITION

A graphon W is an L1 integrable function : [0, 1]2 → R+.
It represents a graph with infinitely many vertices taking
labels in [0, 1], and the edge weight connecting vertex u and
v is given by W (u, v). It is a natural notion for the limit of
a sequence of graphs as the size of vertices grows.

Any finite graph can be expressed equivalently as a graphon:
given any graph on n ≥ 1 vertices with non-negative edge
weights, it can be equivalently expressed as a matrix ξ ∈
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Rn×n
+ , where ξij is the edge weight between vertex i and j.

We define a step graphon associated with ξ, denoted as Wξ

on [0, 1]2 below:

Wξ(u, v) :=

n∑
i,j=1

ξij1{u∈In
i ,v∈In

j }

where the interval of [0, 1] is divided into n bins with the
ith bin as Ini := [(i− 1)/n, i/n),∀i = 1, . . . , n− 1; Inn :=
[(n− 1)/n, 1].

2.2.2. GRAPHON OPERATOR

Given a Polish space E and any graphon W , the graphon
operator W, which maps a measure on Punif([0, 1]×E) to
a function [0, 1]→M+(E), is defined as follows (Lacker
& Soret, 2022): for any m ∈ Punif([0, 1]× E),

Wm(u) :=

∫
[0,1]×E

W (u, v)δxm(dv, dx) (1)

where δx is Dirac delta measure at x. Intuitively, assume
m admits disintegration m(du, dx) = dvmu(dx), and W
represents a graph with infinitely many vertices where each
vertex u ∈ [0, 1] bears a random value on E with distri-
bution mu. Then Wm(u) =

∫
[0,1]×E

W (u, v)δxmv(dx)dv

is an average of the distribution of the random value over
all vertices, weighted by edges with u as one end. Note
that Wm(u) ∈M+(E) since the weighted average may no
longer be a probability measure.

2.2.3. STRONG OPERATOR TOPOLOGY

Now we define convergence of graphons in strong operator
topology. We abuse the notation by denoting the usual
integral operator W : L∞[0, 1]→ L1[0, 1],

Wϕ(u) :=

∫
[0,1]

W (u, v)ϕ(v)dv ∀ϕ ∈ L∞[0, 1] (2)

and it should lead to no ambiguity as graphon operators
and integral operators have different domains. We say a
sequence of graphons Wn converges to a limit graphon W
in the strong operator topology if for any ϕ ∈ L∞[0, 1],
∥Wnϕ−Wϕ∥1 → 0, denoted as Wn →W . Convergence
in strong operator topology is usually weaker than converge
in cut norm, see appendix A.5.

3. Finite Player Games
Consider a game with n ∈ N+ players. Let ξ ∈ Rn×n

+

be an interaction matrix with nonnegative entries, where
ξij is the interaction influence of player j onto player i
for i, j ∈ [n]. Let T ∈ N+ be terminal time of the game,
and T := {0, 1, 2, . . . , T − 1}. At each time t, denote
Xt = (X1

t , . . . , X
n
t ) ∈ (Rd)n the state dynamics of all the

players, i.e. each player’s state takes value in Rd for some
fixed d ≥ 1, and let C := (Rd)T+1 be the space of state
paths. For any x ∈ C, write xt the value of path at time

t. The initial states X0 follow a vector of initial measures
λ = (λ1, . . . , λn) ∈ (P(Rd))n. At each time every player
may choose an action from the action space A, and we
assume thatA ⊂ Rd is compact. LetAn be the collection of
all feedback policies T×(Rd)n → P(A), and each player’s
action follows a policy from this collection. For any policy
πi ∈ An chosen by player i, the state process of player i
evolves by a transition kernel P : T×Rd×M+(Rd)×A→
P(Rd) as follows

Xi
0 ∼ λi

ait ∼ πi
t(Xt) Xi

t+1 ∼ Pt(X
i
t ,M

i
t , a

i
t)

for i = 1, . . . , n, where

M i :=
1

n

n∑
j=1

ξijδXj ∈M+(C)

is the empirical weighted neighborhood measure of player
i, and M i

t is the time t marginal of M i. “Empirical” means
the measure is an average of the Dirac measures at the
realizations, in particular, M i is a random measure. M i

depicts an average of all players’ states, weighted by their
influence on player i. At each time, every player chooses an
action according to her policy, and her state process X is
Markov decision process (MDP), which now depends not
only on her current state and action, but also the empirical
weighted neighborhood measure. Note that at each time
t, the policy πi of player i may depend on each of other
players’ state, while the transition law P should only depend
on other players by an aggregation of their states, i.e. the
empirical weighted neighborhood measure.

At each time all players receive running reward according
to some f : T×Rd ×M+(Rd)×A→ R and they receive
a terminal reward at the terminal time T according to some
function g : Rd ×M+(Rd)→ R. The objective of player
i is to maximize her expected accumulated reward

J i(π) := E

[∑
t∈T

ft(X
π,i
t ,Mπ,i

t , aπ,i
t ) + g(Xπ,i

T ,Mπ,i
T )

]
which is a function of the policy of all players π =
(π1, . . . , πn) ∈ (An)

n. We write Xπ,i, Mπ,i and aπ,i

to emphasize that the state dynamic of player i depends on
π.

Definition 3.1. For any nonnegative vector ϵ =
(ϵ1, . . . , ϵn) ∈ Rn

+, an ϵ-equilibrium of the n-player game
is defined as π̂ = (π̂1, . . . , π̂n) ∈ (An)

n such that for any
i,

J i(π̂) ≥ sup
π∈An

J i(π̂−i, π)− ϵi (3)

where (π̂−i, π) denotes the vector π̂ with ith coordinate
replaced by π.

Mapping n-player indices onto a continuous label space.
This part serves as a transition from finite player game
defined above, to its limiting system in the next section.
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In the finite n-player game, we map the index of agent
i ∈ {1, · · · , n} onto a continuous label space [0, 1], by
assigning player i a label ui ∈ Ini := [(i−1)/n, i/n),∀i =
1, . . . , n− 1 and un ∈ Inn := [(n− 1)/n, 1].

We demonstrate that the empirical weighted neighborhood
measure M i can be expressed in terms of the graphon oper-
ator. Let Wξ be the step graphon associated with interaction
matrix ξ, then the interaction between player i and j can
be expressed by ξij = Wξ(ui, uj). Define the empirical
label-state joint measure

S :=
1

n

n∑
i=1

δ(ui,Xi) ∈ P([0, 1]× C) (4)

which is an empirical measure of the label-state pairs of all
players. Then we have for i = 1, . . . , n,

M i =
1

n

n∑
j=1

ξijδXj =

∫
W (ui, v)δxS(dv, dx) = WξS(ui) (5)

This demonstrates that the graphon operator is a general-
ization of the weighted neighborhood measure when there
are infinitely many players: with W being the interaction
among a continuum of players, and µ being their population
label-state joint measure, Wµ(u) is the weighted neighbor-
hood measure for player of label u ∈ [0, 1].

4. Representative-player Graphon Game
4.1. Game formulation

Given a graphon W ∈ L1
+[0, 1]

2 representing the inter-
actions of a continuum types of players, we define the
graphon game associated with W for a single represen-
tative player as follows. Let the state and action space
be defined as in Section 3. Let (Ω,F ,F,P) be a filtered
probability space that supports an F0-measurable random
variable U uniform on [0, 1], and an adapted Markov pro-
cess X valued in Rd. We understand U as the label for
the representative player, and X as her state dynamic. The
initial label-state law of the representative player is given
by λ := L(U,X0) ∈ Punif([0, 1] × Rd). The term “label-
state” always refer to the joint measure of a player’s label
and state pair (U,X). Let µ ∈ Punif([0, 1] × C) be fixed,
and we understand it as the label-state joint measure of the
population that the representative player reacts to. As in
mean-field games, all other players except the representative
player are abstracted into µ. Let µt ∈ Punif([0, 1]× Rd) be
the marginal of µ under image (u, x) 7→ (u, xt).

Let VU be the collections of all the open-loop policies, i.e.
all the adapted process valued in P(A). Let AU denotes
the collection of all the closed-loop (Markovian) policies,
i.e. measurable functions T × [0, 1] × Rd → P(A). AU

is usually a proper subset of VU , unless the filtration is
generated by U and X . For any π ∈ VU , the label-state pair
(U,X) follows the transition dynamic (U,X0) ∼ λ and at

each t ∈ T,

at ∼ πt Xt+1 ∼ Pt(Xt,Wµt(U), at)

for the same {Pt}t∈T as in the finite player game introduced
in section 3. In words, the representative player is uniformly
assigned a label U at time 0, and her later state transition
depends on her current state, action and weighted neighbor-
hood measure Wµt(U) ∈ P(Rd). Recall the indentity in
equation (5), µ is now a generalization of S defined in (4)
when there are infinitely many types of players, and Wµ(u)
is the distribution of the states of the population (infinitely
many other players), reweighted by their interaction with
the representative player when her label is u ∈ [0, 1].

Let f : T×Rd×M+(Rd)×A→ R be the running reward
and g : Rd ×M+(Rd) → R be the terminal reward. The
objective of the representative player is to choose a policy
π ∈ VU to maximize

JW (µ, π) := E
[∑

t∈T

ft(X
π
t ,Wµt(U), aπ

t ) + g(Xπ
T ,WµT (U))

]
Note that the expectation is w.r.t. all random elements on
F , i.e. (U,X) and π, and we use Xπ , aπ to emphasize that
they depends on the policy π.

Definition 4.1. We say that the measure-policy pair
(µ̂, π̂) ∈ Punif([0, 1]× C)× VU is a W -equilibrium if

JW (µ̂, π̂) = sup
π∈VU

JW (µ̂, π) (6)

µ̂ = L(U,X π̂) (7)

µ̂, π̂ are called equilibrium population measure and equilib-
rium optimal policy respectively.

Intuitively, the game is formulated for a representative
player, while all other players are abstracted into a label-
state joint measure µ. The representative player interacts
with the population only through the weighted neighbor-
hood measure Wµ(U), according to which she takes action
to optimize her reward. We give a comprehensive compar-
ison between our formulation with the continuum-player
graphon game in Appendix B.
Remark 4.2. We define an infinite horizon version of
graphon game with time-invariant dynamics and rewards
in Appendix A.1. The analysis in the rest of this section
could be easily adpated to the infinite horizon formulation
by eliminating the time dependency of functions.

GMFG as MFG with augmented state space. The
graphon games defined here could be transformed into clas-
sical MFGs with an augmented state space, by imposing
the label space [0, 1] as an additional dimension to the state
space. However, this does not simplify the analysis or proof,
and it is not appropriate to adapt existing results from MFG
directly (See Appendix A.2).
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4.2. Existence of Equilibrium

Assumption 4.3. 1. The action space A is a compact sub-
space of Rd.

2. The running rewards ft, ∀t ∈ T and terminal reward g
are bounded and jointly continuous.

3. The intial distribution λ ∈ Punif([0, 1] × Rd) admits
disintegration λ(du, dx) = duλu(dx), and the following
collection of measures is tight 1 :

{λu}u∈[0,1] ⊂ P(Rd)

4. For each t ∈ T, the following collection of measures is
tight:

ζt := {Pt(x,m, a)}(x,m,a)∈Rd×M+(Rd)×A ⊂ P(Rd)

5. For each t ∈ T, Pt(x,m, ·) is continuous in A for every
(x,m) ∈ Rd ×M+(Rd).

An example case where Assumption 4.3(3, 4) are trivially
satisfied is that there exists some compact subspaceX ⊂ Rd

such that the collection ζt are uniformly supported on X ,
i.e. the Markov process X takes values in the state space
X . Also note that we do not assume the graphon W to be
continuous.

Theorem 4.4. Suppose assumption 4.3 holds. Then there
exists a W -equilibrium (µ̂, π̂). Moreover, the equilibrium
optimal policy π̂ can be chosen to be a closed-loop policy.

The theorem is proved with probabilistic compactification
and Kakutani-Fan-Glicksberg fixed point theorem in Ap-
pendix D.

4.3. Uniqueness of Equilibrium

Assumption 4.5. 1. The state transition law P does not
depend on the measure argument. Then it reads Pt :
Rd ×A→ P(Rd) for t ∈ T.

2. For each t ∈ T, the running reward ft is sepera-
ble in the measure and action argument: there exists
f1t : Rd ×M+(Rd) → R and f2t : Rd × A → R such
that ft(x,m, a) = f1t (x,m) + f2t (x, a).

3. The optimal policy is unique. More specifically, for each
µ ∈ Punif([0, 1]×C), the supremum supπ∈VU

JW (µ, π)
is attained uniquely.

4. The functions f1t and g satisfy the Larsy-Lions Mono-
tonicity condition, in the following sense: for any
m1,m2 ∈ Punif([0, 1]× Rd), and t ∈ T,

1Recall the definition of tightness: for arbitrary index set I and
Polish space E, a collection of probability measures {Pi}i∈I ⊂
P(E) is tight if for any ϵ > 0, there exists some compact measur-
able subset K ⊂ E such that infi∈I Pi(K) > 1− ϵ.

∫
[0,1]×Rd

(
g(x,Wm1(u))− g(x,Wm2(u))

)
(m1 −m2)(du, dx) ≤ 0∫

[0,1]×Rd

(
f1t (x,Wm1(u))− f1t (x,Wm2(u))

)
(m1 −m2)(du, dx) ≤ 0

Assumption 4.5 are the graphon game analogies to classic
uniqueness assumptions in mean-field games, see for ex-
ample Carmona & Delarue (2018, Section 3.4) and Lacker
(2018, section 8.6).

Theorem 4.6. Suppose assumption 4.3 and assumption
4.5 holds. Then the graphon game admits a unique W -
equilibrium.

The proof follows a standard argument in MFG, see Ap-
pendix E.

4.4. Approximate Equilibrium for Finite Player Game

Let π̂ : T× [0, 1]×Rd → P(A) be the equilibrium optimal
closed-loop policy of the graphon game associated with
graphon W , and we construct an n-player game policy from
π̂ as follows. Assign player i the policy

πn,un,i(t, x1, . . . , xn) := π̂(t, uni , xi) (8)

and πn,un

:= (πn,un,1, . . . , πn,un,n) ∈ (An)
n. Define

ϵni (u
n) := sup

β∈An

Ji(π
n,un,−i, β)− Ji(πn,un

) (9)

and ϵn(un) := (ϵn1 (un), . . . , ϵnn(un)). ϵni (un) is the largest
reward improvement player i could achieve by changing her
own policy, when all other players follow policies πn,un

.
By definition 3.1, πn,un

is an ϵn(un)-equilibrium of the n-
player game. We need the following additional assumptions.

Assumption 4.7. 1. ξn ∈ Rn×n
+ is a sequence of matrix

with 0 diagonals such that Wξn →W in strong operator
topology, and

lim
n→∞

1

n3

n∑
i,j=1

(ξnij)
2 = 0 (10)

2. For each t ∈ T, the transition dynamic Pt : Rd ×
M+(Rd) × A → P(Rd) is jointly continuous for all
t ∈ T.

The next main result demonstrates that the n-player game
policy πn,un

constructed from the graphon game equilib-
rium optimal policy π̂ forms an approximate equilibrium,
and it converges to the true equilibrium in an average sense
as the number of players n→∞.

Theorem 4.8. Suppose assumption 4.3 and assumption 4.7
holds. For each n ∈ N+, let Un := (Un

1 , . . . , U
n
n ) where

Un
i ∼ unif(Ini ) and Un

i is independent of Un
j for i ̸= j.
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Then we have

lim
n→∞

1

n

n∑
i=1

E[ϵni (Un)] = 0 (11)

The proof is in Appendix F. Equation (11) can be equiv-
alently written as ϵnIn(Un) → 0 in probability, where
In ∼ unif([n]). Intuitively, for randomly assigned label
Un, and a player In uniformly chosen on [n], the error is
small. As the number of player n → ∞, the collection
of Un and player label In such that the error cannot be
controlled becomes a measure 0 set.
Remark 4.9. Equation (10) is a very mild graph denseness
condition and is satisfied by many commonly-encountered
finite graphs. The assumption Wξn →W also poses dense-
ness restrictions on the underlying graphs of interaction
matrix ξn, as the existence of a graphon limit implicitly
implies that the sequence of finite graphs are dense enough.
We give some examples and a detailed discussion on dense
graph sequence in Appendix A.5.

5. Learning Scheme and Sample Complexity
We now develop a scheme for learning the stationary equi-
librium of infinite-horizon graphon games (Appendix A.1).
Throughout the section we assume finite state space X and
action space A.

5.1. Finite Classes of Label Space

To handle the continuous label space algorithmically, one
generally needs function approximation techniques such as
linear function approximation or neural networks, which is
beyond the scope of this work. For the development and
analysis of our algorithms, we discretize the label space
[0, 1] into D classes of types of players U ⊂ [0, 1] such that
|U| = D <∞. We denote U := {u1, . . . , uD}, and define
projection mapping ΠD : [0, 1] → U . Denote the inverse
image Iud

:= Π−1
D (ud) ⊂ [0, 1]. A simple example is the

uniform quantization: [0, 1] is divided intoD bins {IDd }Dd=1,
and ΠD maps each bin to its midpoint:

ΠD(u) =

D∑
i=1

2i− 1

2D
1{u∈ID

i } (12)

As we are only able to learn measures on the finite dis-
cretization U , we define ΠD : P(X )U → Punif([0, 1]×X )
as follows: for any M = {Mud}Dd=1, ΠDM is the mea-
sure Leb ⊗ ν, where ν is a probabilistic kernel given by
ν(u) :=

∑D
d=1M

ud1{u∈Iud
}.

5.2. Approximate Fixed-Point Iteration

Our learning scheme follows fixed-point iteration (FPI),
which is widely used for learning (G)MFGs (Guo et al.,
2019; Cui & Koeppl, 2022; Zhang et al., 2023). An FPI rep-
resents an update of the game: given the population measure,

the representative player first finds the optimal policy in re-
action to this population, i.e. Γ1 : Punif([0, 1]×X )→ AU ,
Γ1(µ) := argmaxπ∈AU

JW (µ, π). As everyone in the pop-
ulation reacts similarly, the population is then updated
to the induced state distribution of the acquired policy,
i.e. Γ2 : AU × Punif([0, 1] × X ) → Punif([0, 1] × X ),
Γ2(π, µ) := L(U,Xπ). Then, the FPI is given by Γ(µ) :=
Γ2(Γ1(µ), µ), and the equilibrium population measure µ̂
satisfies µ̂ = Γ(µ̂). However, the FPI operators can be hard
to implement. As the environment (P and f ) is unknown,
Γ1 and Γ2 are not directly accessible and need to be approx-
imated. The general approximate FPI scheme is presented
in Algorithm 1.

Algorithm 1 provides a general framework that can incor-
porate various learning algorithms for the two evaluation
steps as subroutines, with (i) and (ii) approximating Γ1 and
Γ2 respectively. If the access to a state process generator
(called an oracle) is assumed, we may generate the state
variable under any control and population measure for arbi-
trary times, and Algorithm 1 recovers the algorithms used
in prior work (Cui & Koeppl, 2022; Zhang et al., 2023).

Algorithm 1 Approximate FPI for GMFGs

Initialize policy estimate {π0
d}Dd=1 and population esti-

mate {M0
d}Dd=1 for all label classes d ∈ [D]

for k ← 0 to K − 1 do
for d← 1 to D do

(i) Evaluate approximate optimal policy πk+1
d in re-

action to Mk (ii) Evaluate approximate population
measure Mk+1

d induced by πk+1
d

end for
end for
Return

{
πK
d

}
and {MK

d }

We next provide the first non-asymptotic analysis for D-
class FPI scheme given the following assumptions.

Assumption 5.1. 1. The transition kernel and reward func-
tion are uniformly LP , Lf Lipschitz w.r.t. the measure
argument respectively: 2

sup
x,a
|f(x,m1, a)− f(x,m2, a)| ≤ Lf∥m1 −m2∥TV,

sup
x,a
∥P (x,m1, a)− P (x,m2, a)∥TV ≤ LP ∥m1 −m2∥TV

2. There exists Ld such that

sup
u,v∈[0,1]

|W (u, v)−W (ΠD(u), v)| ≤ Ld/D.

3. The FPI operator Γ is a contraction mapping: there
exists κ ∈ (0, 1) such that, ∥Γ(µ1) − Γ(µ2)∥TV ≤
(1− κ)∥µ1 − µ2∥TV, ∀µ1, µ2.

2Finite signed measures on finite space can be equivalently
expressed as a vector, and the total variation norm is equivalent to
the ℓ1 norm.
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5.1(2) ensures label classes U are a good approximation of
the label space [0, 1]. An example that satisfies this is the
uniform quantization ΠD in equation (12) if the graphon is
Lipschitz continuous in the first argument. The contraction
mapping assumption is limited but unfortunately necessary
in complexity analysis proofs. We give a brief discussion on
this assumption and different types of fixed-point theorems
in Appendix A.6.

Suppose Assumptions 5.1 hold, Algorithm 1 with exact
evaluation steps needs at most D = O(κ−1ϵ−1) classes and
K = O(κ−1 log ϵ−1) iterations to achieve an ϵ-approximate
equilibrium. This claim is formalized in Theorem 5.4.

5.3. Online Oracle-Free Learning

We now present an online oracle-free subroutine for ap-
proximate evaluation steps in Algorithm 1 by specifying a
concrete implementation of the two evaluation steps (i) and
(ii). Specifically, we use SARSA (Sutton & Barto, 2018),
a value-based reinforcement learning method, for policy
estimation, and Markov chain Monte Carlo (MCMC) for
population estimation.

For policy estimation, we maintain a Q-function: U × X ×
A→ R, with entry Qd(x, a) estimating the expected return
starting with the state-action pair (x, a) conditional on label
being ud. Let Q be the collection of all Q-functions. To
obtain the policy from a Q-function, we assume access to
a Lipschitz continuous policy operator Γπ : Q → AU , i.e.,
for any Q1, Q2 ∈ Q, there exists a constant Lπ such that
sup
u,x
∥(Γπ(Q1)−Γπ(Q2))(u, x)∥TV≤Lπ∥Q1−Q2∥2 (13)

An example policy operator satisfying (13) is the softmax
function, with its temperature parameter controlling the
constant Lπ (Gao & Pavel, 2017). Given Γπ, SARSA con-
verges to the Q-function corresponding to the optimal policy
in Γπ(Q) ⊂ AU (Zou et al., 2019).
Remark 5.2. Utilizing a Lipschitz continuous policy opera-
tor, Γ1 returns the optimal Q-function instead of a policy;
and Assumption 5.1(3) can be relaxed to only requiring
Γ1 and Γ2 to be Lipschitz continuous with constants L1

and L2. Then, we can choose a sufficiently smooth policy
operator such that LπL1L2 < 1, making the FPI operator
Γ(µ) := Γ2(Γπ(Γ1(µ)), µ) contractive.

For population estimation, we maintain a M-function: U →
P(X ), with entry Md estimating the population measure
of the representative player conditional on label ud. Since
U × X ×A is a finite space, both Q- and M-functions can
be represented by tables. Being fully online, SARSA and
MCMC can update the Q- and M-functions using the same
online samples without the need of any oracle. Specifi-
cally, we execute H updates for the evaluation subroutine
of Algorithm 1. At each step τ = 0, . . . ,H − 1, the rep-
resentative agent with label ud at xτ samples its action

aτ ∼ Γπ(Q
k,τ
d ), reward rτ = f(xτ ,WΠDM

k,0(ud), aτ ),
next state xτ+1 ∼ P (xτ ,WΠDM

k,0(ud), aτ ), and next
action aτ+1 ∼ Γπ(Q

k,τ
d ). Using these sample, the Q- and

M-functions are updated simultaneously as follows:

Qk,τ+1
d (xτ , aτ )←(1− ατ )Q

k,τ
d (xτ , aτ )

+ ατ

(
rτ + γQk,τ

d (xτ+1, aτ+1)
)
,

Mk,τ+1
d ←(1− βτ )Mk,τ

d + βτδxτ+1
,

(14)
where the Q- and M-functions are indexed by the outer it-
eration k and the inner evaluation step t, and ατ and βτ
are step sizes. Substituting the Q-function Qk,τ

d with the
optimal Q-function Qµk,τ

associated with the population
measure µk,τ = ΠDM

k,τ , we recover the FPI scheme in
Algorithm 1. Substituting (i) and (ii) in Algorithm 1 with
H updates using Equation (14), we obtain the first fully
online algorithm for learning GMFGs. Notably, our method
is oracle-free in the sense that we do not assume access to an
optimal policy calculator or a state process generator. Addi-
tionally, in contrast to FPI-like methods in prior work where
(i) and (ii) in Algorithm 1 are executed sequentially, Equa-
tion (14) updates both policy and population concurrently
using the same samples, enhancing the sample efficiency.
Algorithm 2 is an example of concrete realization of the
aformentioned ideas.

Finally, we give the sample complexity of our method. As
our method is fully online, we need the following ergodicity
assumption (Zou et al., 2019).
Assumption 5.3. For any π ∈ Γπ(Q) and M ∈ P(X )U ,
the Markovian state dynamic is ergodic: there exists µ ∈
Punif(U × X ) and c1 > 0, c2 ∈ (0, 1) such that

sup
x
∥P(Xτ ∈ · |X0 = x)− µ∥TV ≤ c1cτ2 ,

where the dynamic of X is determined by policy π and
neighborhood measure WΠDM .
Theorem 5.4. Let µ̂ be the stationary equilibrium measure
of the infinite horizon GMFG. Suppose Assumptions 5.1
and 5.3 hold. For any initial estimate M0,0 ∈ P(X )U ,
Algorithm 1, combined with Equation (14) and step sizes
ατ , βτ ≍ 1/τ , finds an ϵ-approximate equilibrium distribu-
tion MK,H such that E∥ΠDM

K,H − µ̂∥TV ≤ ϵ, with the
number of iteration being at most

K = O
(
κ−1 log ϵ−1

)
, D = O

(
κ−1ϵ−1

)
,

H = O
(
κ−3ϵ−3 log ϵ−1

)
,

giving a total sample complexity of O
(
κ−5ϵ−4 log2 ϵ−1

)
.

The proof of Theorem 5.4 and more details of our method
are deferred to Appendix G.

6. Numerical Experiments
In this section, we apply our learning algorithm to three
graphon game examples, namely, Flocking-, SIS- and Invest-
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Graphon. We first briefly introduce each game scenario,
and present only the algorithm performance and GMFE for
Flocking-Graphon due to space limit. The problem formula-
tion of each game is in Appendix H. The detailed numerical
results are in I, including algorithm performance (e.g., ex-
ploitability, convergence) and visualizations for GMFE. All
numerical experiments are conducted on Mac Air M2.

Flocking-Graphon The flocking-graphon game (Lacker
& Soret, 2022) studies the flocking behavior in a system
where each agent makes decisions on its velocity which in
turn determines its position. We consider the game with
X = [0, 1], and a time horizon T = [0, 1], under proper
discretization. The policy is in the form πt(u, x) ≡ δαt(u,x),
where αt(u, x) is the velocity of the agent conditional on
label being u and position being x at time t. Each agent aims
to minimize its own running cost determined by the velocity
control and the agent’s deviation from the population.

SIS-Graphon The SIS-Graphon game (Cui & Koeppl,
2022) models an epidemic scenario where agents can choose
take precautions to avoid being infected. The infected prob-
ability is determined by the agents’ action (i.e., take precau-
tion or not) and the number of infected neighbours.

Invest-Graphon In the Invest-Graphon game model (Cui
& Koeppl, 2022), each firm aims to maximize its own profit,
which is determined by the firm’s investment strategies and
other firms’ product quality.

Figure 1. Algorithm performance (Flocking-Graphon)

We test four types of graphons: uniform attachment
graphon (Wunif(u, v) = 1−max(u, v)), ranked attachment
graphon (Wrank(u, v) = 1 − uv), Erdös-Rényi graphon

(Wer(u, v) = p) and threshold graphon (Wthresh(u, v) =
1u+v<1). Figure 1 demonstrates the algorithm perfor-
mance to solve the Flock-Graphon. The x-axis denotes
the epoch index k. We visualize the convergence gaps
|µ(k) − µ(k−1)|, |π(k) − π(k−1)|, and the W1-distances
|µ(k) − µ∗|, |π(k) − π∗|, which measures the closeness be-
tween the benchmark solution (π∗, µ∗) and results at each
epoch. The benchmark solution is obtained by the equiva-
lent class method (Cui & Koeppl, 2022). The results show
that it takes around 50 epochs for our algorithm to converge.
The convergence performance remains consistent for all
four graphons.

Figure 2 shows the obtained GMFE for Flocking-Graphon.
We visualize the policy and state density of agent with label
U = 1 at equilibrium in a 3D plot. The x-axis denotes the
space domainX , and the y-axis is the time horizon T . Agent
with each label is intialized at t = 0 uniformly over X . Note
that the GMFE is time-dependent. We adapt our learning
algorithm to solve GMFGs with finite horizons (See Algo
3 in Appendix G). The z-axis is the spatial-temporal veloc-
ity control αt(1, x) and population density µt(1, x) of the
agent with label 1. The numerical results show that GMFEs
associated with Wunif and Wthresh are similar. The flock
behavior occurs when agents gather together at position
x = 0.6 and the population density µ reaches a red peak
around 0.35 with velocity around 0.2. When the agent’s
velocity reaches the maximum velocity αmax = 1 (dark
red), the population quickly dissipates (dark blue) and no
flock behavior occurs.

7. Conclusion
We offer a new general formulation of graphon games with
one representative player in continuous state and action
space. We gave a comprehensive analysis on the equilibrium
properties with assumptions milder than previous works. We
present a general approximate fixed-point iteration frame-
work, and designed an oracle-free algorithm along with the
sample complexity analysis.
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Figure 2. GMFE (Flocking-Graphon)

Broader Impact
This work is motivated by the theoretical challenges in the
analysis of graphon games. As a generalization to mean-
field games, graphon games is capable of modeling het-
erogeneous interactions among gaming participants, and
this flexibility allows it to cover a broader range of appli-
cations in finance, economics, engineering, including for
example high-frequency trading, social opinion dynamics
and autonomous vehicle driving. By addressing rigorously
the technical issues faced by games on networks, this work
proposes a conceptually and mathematically concise formu-
lation. The analysis provides concrete theoretical foundation
for the mathematical properties, on top of which the algo-
rithms empower the solvability of the system. With the
comprehensive and self-consistent technical analysis, this
work is capable of modeling system with large amount of
agents and remain computationally efficient.
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Pietquin, O. Generalization in mean field games by learn-
ing master policies. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 36, pp. 9413–9421,
2022.

Solan, E. and Vieille, N. Stochastic games. Proceedings of
the National Academy of Sciences, 112(45):13743–13746,
2015.

Sun, Y. The exact law of large numbers via fubini exten-
sion and characterization of insurable risks. Journal of
Economic Theory, 126:31–69, 2006.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tangpi, L. and Zhou, X. Optimal investment in a large pop-
ulation of competitive and heterogeneous agents, 2023.

Yang, J., Ye, X., Trivedi, R., Xu, H., and Zha, H. Deep mean
field games for learning optimal behavior policy of large
populations. In International Conference on Learning
Representations, 2018a.

10



Graphon Mean Field Games with A Representative Player: Analysis and Learning Algorithm

Yang, Y., Luo, R., Li, M., Zhou, M., Zhang, W., and Wang,
J. Mean Field Multi-Agent Reinforcement Learning. In
International Conference on Machine Learning, pp. 5571–
5580, July 2018b.

Zhang, F., Tan, V. Y., Wang, Z., and Yang, Z. Learning
regularized monotone graphon mean-field games. Neural
Information Processing Systems, 2023.

Zou, S., Xu, T., and Liang, Y. Finite-sample analysis for
sarsa with linear function approximation. Advances in
neural information processing systems, 32, 2019.

11



Graphon Mean Field Games with A Representative Player: Analysis and Learning Algorithm

Organization of Appendix
The appendix is outlined as follows.

Appendix A is a discussion section serving as a supplement to the concepts in the main paper. The topics include: the
infinite horizon version of graphon game formulation (Appendix A.1), formulating the graphon game into a mean-field game
with augmented state space (Appendix A.2), the degeneration of graphon game to mean-field games with trivial graphon
(Appendix A.3), time-variant interaction intensities (Appendix A.4), dense graph sequence and examples (Appendix A.5),
fixed point theorems and the contraction mapping assumption (Appendix A.6).

In Appendix B, we define the continuum-player formulation (Appendix B.1) and compare it with our representative-
player formulation (Appendix B.2). In particular, we discuss in detail the aforementioned measurability issue residing
in continuum-player formulation. We then give a toy example in Appendix C to demonstrate the difference on the two
formulations.

The following three appendix are dedicated to the proof of analysis properties. The existence of equilibrium (Theorem 4.4) is
proved in Appendix D. The uniqueness of equilibrium (Theorem 4.6) is proved in Appendix E. The approximate equilibrium
(Theorem 4.8) is proved in Appendix F.

In Appendix G.1 we give a concrete realization of algorithm discussed in Section 5.3, and the rest of Appendix G is dedicated
to the proof of the sample complexity of learning algorithms (Theorem 5.4). Finally, we give the detailed problem setups for
the numerical examples in Appendix H, and show the numerical results in Appendix I.

A. Additional Discussion
A.1. Infinite horizon formulation

In this section we define the infinite horizon version of the representative-player graphon game, as appose the the finite
horizon version defined in section 4.1. All analysis results in section 4 regarding existence, uniqueness and approximate
equilibrium holds by adjusting the assumptions accordingly.

Let the graphon W ∈ L1
+[0, 1]

2 be given and fixed. Let (Ω,F ,F,P) be a filtered probability space that support an F0-
measurable random variable U uniform on [0, 1], and a Markov process X valued in Rd. We understand U as the label for
the representative player, and X as her state dynamic. Let the flow of label-state joint measures be µ ∈ Punif([0, 1]× C),
where the path space C =

∏∞
i=0 Rd is now a countable product of Rd. µt ∈ Punif([0, 1]× Rd) is the marginal under image

(u, x) 7→ (u, xt). Let the initial joint law λ := L(U,X0) ∈ Punif([0, 1]× Rd) be given.

We still let AU denotes the collection of time-variant closed-loop (Markovian) policies N+ × [0, 1]×Rd → P(A). For any
π ∈ AU , (U,X) follows the transition dynamic

(U,X0) ∼ λ
at ∼ πt(U,Xt) Xt+1 ∼ P (Xt,Wµt(U), at)

at any time t ∈ N+. Note that the transition law P is time-invariant. Let f : Rd×M+(Rd)×A→ R be the running reward
and γ ∈ (0, 1) be a known discount factor. The objective of the representative player is to choose π ∈ AU to maximize

JW (µ, π) = E
[ ∞∑

t=0

γtf(Xπ
t ,Wµt(U), at)

]

Definition A.1. We say that (µ̂, π̂) ∈ Punif([0, 1]× C)×AU is a W -equilibrium if

JW (µ̂, π̂) = sup
π∈VU

JW (µ̂, π)

µ̂ = L(U,X π̂)

If we do not fix an initial distribution λ, we may define a stationary equilibrium which is time independent:
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Definition A.2. We say that (µ̂, π̂) ∈ Punif([0, 1]× Rd)×AU is a stationary W -equilibrium if

JW (µ̂, π̂) = sup
π∈AU

JW (µ̂, π)

µ̂ = L(U,X π̂
t ) ∀t ≥ 0

where AU now denotes the collection of time-invariant closed-loop policies [0, 1]× Rd → P(A).

Note that we need an additional ergodicity assumption of the Markov chain to show the existence of stationaryW -equilibrium
with the same proof argument in Appendix D, i.e. the Markov chain admits a stationary distribution under any policy. A
sufficient condition for ergodicity is given in Assumption 5.3.

A.2. Game with Augmented State Space

We give another view of graphon game by reformulating it into a mean-field game with augmented state space. We
view the label U as a coordinate of the state, and it remains at the same value a.s. Let Xt =

(
U
Xt

)
∈ Rd+1, where the

state process space is augmented by one more dimension. Any fixed µ ∈ Punif([0, 1] × C) can now be equivalently
regarded as an element in P(Cd+1) where Cd+1 = (Rd+1)T+1 is the augmented path space. More specifically, we denote
µt := µ ◦ (U,Xt)

−1 ∈ P(Rd+1), where ◦ is the pushforward. Given any graphon closed-loop policy π ∈ AU , define a
mean-field closed-loop policy π and a mean-field Markovian transition law P as follows. For every x =

(
u
x

)
∈ Rd+1,

πt(x)(da) := πt(u, x)(da)

P t(x,m, a)(dy) := δu(dv)Pt(x,Wm(u), a)(dy) ∀y =

(
v

y

)
respectively and let λ(dy) := λ(dv, dy) for any y =

(
v
y

)
be the mean-field intial condition. Then X satisfies the dynamic

X0 ∼ λ
at ∼ πt(Xt) Xt+1 ∼ P t(x, µt, at)

Define similarly for every x =
(
u
x

)
∈ Rd+1 the reward functions

f t(x,m, a) := ft(x,Wm(u), a)

g(x,m) := g(x,Wm(u))

for all t ∈ T. The objective is recast into

J(π) := E

[∑
t∈T

f t(X
π

t , µt, at) + g(X
π

T , µT )

]

thus we have obtained a classic mean-field game problem associated with the new coefficients λ, P t, f t, g. Note that their
implicit dependence on W .

However, it is worth noticing that in most of the proofs for graphon game, this translation into mean-field game with
augmented state space does not simplify the mathematical analysis, and it is not appropriate to adapt the mean field game
results directly. There are two main reasons (Lacker & Soret, 2022):

Firstly, it requires the graphon W ∈ L1
+[0, 1]

2 to be continuous. To see this, recall that most of the results for classic
mean-field games assume the joint continuity of reward function, see e.g. (Carmona & Delarue, 2018; Lacker, 2018). In
particular, f t(x,m, a) := ft(x,Wm(u), a) is assumed to be continuous in the augmented state variable x = (u, x)⊤. This
requires the graphon operator Wµ viewed as a function

[0, 1] ∋ u 7→Wµ(u) ∈M+(E)

13
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should be continuous, for any µ ∈ Punif([0, 1]×E), which is satisfied by a continuous graphon. However, the graphon is in
general not a continuous function. Indeed many commonly encountered convergent graph sequence tends to a discontinuous
graphon limit, see for instance examples in (Lovász, 2012) section 11.4.

Second, in the analysis of approximate equilibrium, the model setting for the finite-player game does not fit into this
augmented state space framework. Consider an n-player game associated with interaction matrix ξ ∈ Rn×n

+ , and assign
player i the label ui ∈ Ini . Recall the setting for finite player games in section 3, the running reward can be written as
ft(X

i
t ,WξSt(ui), a

i
t), where S is the empirical label-state measure defined in (4). On the other hand, let X

i

t =
(
ui

Xi
t

)
, and

the running cost of player i in the aformentioned augmented state space framework is

f t(X
i
, St, a

i
t) := ft(X

i,WSt(ui), a
i
t)

which is different from the originial problem, as in the finite player game the graphon W needs to be replaced with the step
graphon Wξ. However, it is not possible to incorperate this change in the augmented state space framework. As a result the
augmented state space transformation fails to provide an approximate equilibrium result, which is a strong justification of
the reasonableness of graphon game formulation.

In continuous time setting (Lacker & Soret, 2022), the augmented state space formulation provides an equivalent forward-
backward PDE system for the graphon game, and thus provides another perspective to the problem formulation.

Actually the continuum-player graphon games may be transformed to a mean-field game with augmented state space in a
similar way, and many previous works on continuum-player formulation relied on this (Cui & Koeppl, 2022; Zhang et al.,
2023) to show existence of equilibrium. However, they not only suffer from the two limitations mentioned above, but also
encounter a critical measurability issue that representative-player formulation does not have, and this leads to difficulties in
the proof. We will discuss this point in detail in Appendix B.

A.3. Degeneration to mean-field games under trivial graphon

When the graphon W ≡ 1, the interactions among players are symmetric, and we illustrate that our graphon game
formulation degenerates to the classic mean-field game.

let the initial distribution λ, which is a product measure with the path space marginal λ◦, be given. Fix a population measure
µ ∈ Punif([0, 1] × C) and assume it takes the product measure form: µ(du, dx) = du × ν(dx) for some ν ∈ P(C). The
graphon operator applied on µ degenerates to ν:

Wµ(u) =

∫
[0,1]×C

δxµ(dv, dx) =

∫
C
δxν(dx) ∀u ∈ [0, 1]

For any closed-loop policy π ∈ AU that depends only on the state variable, i.e. π is a function T× Rd → P(A), (U,X)
follows the transition dynamic: U ∼ unif[0, 1], X0 ∼ λ◦ and

at ∼ πt Xt+1 ∼ Pt(Xt, νt, at)

note that U and X are now independent. The objective of the representative player becomes

JW (ν, π) = E
[∑

t∈T
ft(X

π
t , νt, at) + g(Xπ

T , νT )

]
where the expectation is w.r.t X only, thanks to the independence between U and X . In this way our label-state graphon
game formulation degenerates to a classic mean-field game problem. The equilibrium measure and controls indeed does not
depend on the label, and thus it is safe to restrict to µ being a product measure and policies not depending on label at the
beginning.

A.4. Time-variant interaction intensity

It is possible to consider time-variant interaction intensity in our framework when the time horizon is finite. In definition of
finite player games (section 3), we may replace ξ with a sequence of matrix {ξt}Tt=0, where ξt is the interaction intensity of
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the n players at time t. The empirical weighted neighborhood measure of player i then becomes M i
t = 1

n

∑n
i=1 ξ

t
ijδXj

t
, and

it can be equivalently written as WξtSt(ui), in the notation of section 3.

In the graphon game setting (section 4.1), we may work on a sequence of graphon {Wt}Tt=0, where Wt is the interaction
among a continuum types of players at time t. Note that the sequence {Wt}Tt=0 should be non-random. By replacing every
Wµt with Wtµt, it is ready to check that the existence (section 4.2) and uniqueness (section 4.3) results still holds. As for
the approximate equilibrium result (section 4.4), we may change assumption 4.7(1) into the following: Wξn,t →Wt, and

lim
n→∞

1

n3

n∑
i,j=1

(ξn,tij )2 = 0

for every t = 0, · · · , T . Then, the approximate equilibrium result still holds.

We present the main paper in terms of a time-invariant graphon W to avoid distraction from the main point we want to
address.

A.5. Graph sequence and the convergence assumption 4.7

Conceptually, a graph is dense if nearly every pair of vertices are connected by an edge. However rigorously, the denseness
of graph is ill-defined, and different results require different denseness conditions.

We first demonstrate that assumption equation (10) is indeed very mild. We may write Tr((ξn)2) =
∑

i,j=1(ξ
n
ij)

2 where
Tr(·) is the trace, and this is referred as second moment of square matrix. Here are several examples on commonly-
encountered interaction matrix on networks.

Complete graph. Let ξnij = 1 for each i ̸= j, and thus ξn is the adjacency matrix of a complete graph, and this recovers the
mean-field case where the players interacts symmetrically. We have Wξn ≡ 1 for all n, and thus Wξn →W for W ≡ 1. We
have

1

n3

n∑
i,j=1

(ξnij)
2 ≤ 1

n
→ 0

Threshold graph. Consider a threshold graph on n vertices where vertex i and j are connected by an edge if i+ j < n, and
let ξnij = 1i+j<n. It is easy to see that Wξn converges in cut norm to a limit defined by W (u, v) := 1u+v<1. It is ready to
check that assumption equiation (10) is satisfied.

Random walk on graph. Consider a graph on n vertices where vetex i has degree dni . Let ξnij =
n
dn
i
1i∼j , where 1i∼j is 1 if

i and j are connected by an edge and 0 otherwise. Then ξ/n is a Markovian transition matrix of the random walk on the
graph. We have

1

n3

n∑
i,j=1

(ξnij)
2 =

1

n

n∑
i,j=1

1

(dni )
2
1i∼j =

1

n

n∑
i=1

1

dni

and the assumption holds if
∑n

i=1
1
dn
i
→ 0. Intuitively this means the average of degrees diverges. In particular, if

dn1 = · · · = dnn = dn, ξn becomes an interaction matrix on a dn-regular graph, and we just need 1
dn
→ 0, i.e. the degree dn

diverges to satisfies equation (10). However, not even every sequence of regular graphs has a graphon limit, and we will
discuss this below.

Erdös-Rényi graph. Consider an Erdös-Rényi graph Gn(pn) (Erdős & Rényi, 1959) on n vertices, where every edge is
connected with Bernoulli(pn). Let ξnij =

1
pn

1i∼j , it is not hard to show that equation (10) holds in probability as long as
npn → ∞. We understand npn as the expected degree of any vertex, and this is an important quantity of Erdös-Rényi
graphs that also implies connectivity (Erdős & Rényi, 1960). Moreover, when pn → p for some p ∈ (0, 1), Wξn →W for
W ≡ 1 in probability.

All examples mentioned above merely requires a diverging-average-degree type condition to be considered dense enough
for our results to hold. These denseness conditions are attracting more and more awareness in the stochastic community and
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particularly in the studies of stochastic differential equation dynamics and heterogenous propogation of chaos on networks
(Delattre et al., 2016; Bris & Poquet, 2023; Jabin et al., 2022).

The assumption Wξn → W is also a denseness condition as the existence of a graphon limit implicitly implies that the
converging graph sequence is generally dense. Actually in the sparse setting, vertices in a local neighborhood interact
strongly with each other and do not become negligible as the number of vertices goes to infinity (Lacker et al., 2023). The
propogation of chaos results also fail in this regime. Nevertheless, not every dense graph sequence necessarily admits a
graphon limit, since the sequence is also required to preserve similar network structures. This can be formalized by graph
homomorphism [(Lovász, 2012) chapter 5].

It is worth noticing that a sequence of sparse graphs may converge if they are sampled from the limiting graphon. There are
works (Fabian et al., 2023) adopting this setting. However conceptually this means the finite player games are constructed
from the graphon game, which is different from the view we take, that graphon games are motivated by finite player games.

Finally, we demonstrate that the convergence of graphon in strong operator topology is weaker than converging in other
norm. Recall the definition of integral operator in equation (2):

Wϕ(u) :=

∫
[0,1]

W (u, v)ϕ(v)dv ∀ϕ ∈ L∞[0, 1]

which maps L∞[0, 1] to L1[0, 1]. The integral operator norm is given by ∥W∥∞→1 := sup∥ϕ∥∞≤1 ∥Wϕ∥1, where ∥ · ∥p is
the Lp norm. It is known to be equivalent to the cut norm [(Lovász, 2012) lemma 8.11] by

∥W∥□ ≤ ∥W∥∞→1 ≤ 4∥W∥□ (15)

where the cut norm of a graphon is defined by

∥W∥□ := sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

W (u, v)dudv

∣∣∣∣
for measurable subsets S, T . It is immediate from (15) that the convergence in strong operator topology is weaker than
converging in the cut norm. Indeed Wn converging to W in L1 also implies Wn →W , see Lemma D.3.

A.6. Fixed point theorems and contraction mapping assumption

There are two main stream fixed point theorems. The first type is based on contraction mapping, that if an operator is
contraction in norm, then it admits a fixed point. An example of this catagory is the well-known Banach fixed point
theorem. The second type, on the other hand, is usually based on the compact properties of the range space and operator,
this includes Brouwer’s fixed point theorem (compact, covex range space and continuous operators), Schauder’s fixed point
theorem (closed, bounded, convex range space and compact operators), and Kakutani-Fan-Glicksberg fixed point theorem
for set-value functions, which is the one we will use in the proof of equilibrium existence (Appendix D).

Contraction based fixed point theorems usually have stronger assumptions, since the contraction in norm property is hard to
verify. However, it provides clear approaches to find the fixed point when one exists: starting from an appropriate initial
point, we may iteratively apply the operator and the result is guaranteed to converge to a fixed point. On the other hand,
compact based fixed point theorems require weaker assumptions, but they fail to indicate how to find a fixed point rather
than telling its theoretical existence.

As learning algorithms are designed to find the fixed point (equilibrium) of the game, they usually try to approximate the
contraction mapping with estimations (since the environment is usually unknown) in order to demonstrates the convergences
of algorithm. Thus the contraction mapping assumption is unfortunately necessary in complexity analysis proofs (see
Assumption 5.1(3)), even though we do not make such assumptions in pure mathematical analysis in section 4.

B. Comparing Representative-player Games and Continuum-player Games
B.1. Continuum-Player Graphon Game

In this section we give a review on continuum-player graphon games in previous works. Consider a game with a continuum of
players, labeled with u ∈ [0, 1], and we assume the label space [0, 1] is equipped with Borel-σ-algebra and Lebesgue measure.
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Each player u admits a state process Xu valued in Rd. Fix a population measure, which is a collection µ = {µu}u∈[0,1],
and it is usually an assumption that u 7→ µu is a probabilistic kernel, i.e. u 7→ µu(B) is a measureable function for any
Borel subset B ⊂ C. Let A be the collection of all the feedback (closed-loop) policies T× Rd → P(A), and assume player
u adopts a policy πu ∈ A, the state process follows

Xu
0 ∼ λu

aut ∼ πu
t (X

u
t ) Xu

t+1 ∼ Pt(X
u
t ,Wµt(u), at)

for some initial condition λu ∈ P(Rd). Here we regard µ as a measure constructed by du× µu(dx), where the assumption
µ being a kernel come into place. It is also common to write

∫
[0,1]

W (u, v)µv
t dv.

Note that all the players’ state dynamics are independent, in the following sense: for every u ∈ [0, 1], Xu is independent of
Xv for every v ∈ [0, 1]. Indeed this independence leads to a significant measurability issue that many proofs ignore, and we
will give a detailed discussion in Appendix B.2.

Each player u aims to maximize an objective function

Ju(µ, πu) := E
[∑

t∈T
ft(X

u,πu

t ,Wµt(u), a
u
t ) + g(Xu,πu

T ,WµT (u))

]

where we denote Xu,πu

to emphasize the process Xu is controlled by policy πu. The equilibrium is defined as a pair
(µ̂, π̂) := ({µ̂u}u∈[0,1], {π̂u}u∈[0,1]) ∈ P(C)[0,1] ×A[0,1] such that

Ju(µ̂, π̂u) = sup
π∈A

Ju(µ̂, π)

µ̂u = L(Xu,π̂u

)

for almost every u ∈ [0, 1]. This is called ”continuum-player formulation” since it involves a continuum of players.

B.2. Comparing representative-player games and continuum-player games

The representative-player graphon game we present in section 4.1 and the continuum-player graphon game in section B.1
are not mathematically equivalent. The representative-player formulation in section 4.1 provides some advantages both
conceptually and technically.

Conceptually, our representative-player formulation inherits the spirit of mean-field game. We recall that there is only
one representative player in the mean-field game, and all other players are abstracted into a population measure in P(C).
Similarly, our game formulation is for one representative player, and the difference is that now the representative player is
in addition assigned a random label, while all other players are abstracted into a label-state joint population measure on
Punif([0, 1]× C).

Mathematically, the representative-player formulation avoids significant measurability difficulties that the continuum-player
formulation suffers from. For completeness, we first cite proposition 2.1 from (Sun, 2006) as follows:

Proposition B.1. Consider index space (I, I, λ) and probability space (Ω,F , P ). Consider function f : I × Ω→ E for
some Polish space E. If f is measurable on the product space (I × Ω, I ⊗ F , λ ⊗ P ), equipped with the usual product
σ-algebra, and for λ-almost every j ∈ I , fj is independent of fi for λ-almost every i ∈ I . Then, for λ-almost every i ∈ I ,
fi is a constant random variable.

Intuitively, the product σ-algebra I ⊗ E fails to support the large amount of information when we require both the joint
measurability of f , and the independence between fi and fj . This would lead to a problem when we consider a continuum
of players, even if the state space is a finite space rather than Rd, and even for a static game.

More precisely, let (Ω,F ,F,P) be a probability space that supports a collection of stochastic processes {Xu : u ∈ [0, 1]},
where Xu is a process on {0, 1, . . . , T} valued in X (which could be Rd or a finite state space). Xu represents the state
process of player with label u. From time t − 1 to t, Xu

t are generated independently for every u ∈ [0, 1], and thus the
mapping u→ Xu(ω) is not measurable for P -almost every ω ∈ Ω, similarly u 7→ au is not measurable. This measurability
issue leads to significant difficulties in the proof, as the objective reward function may involve these mappings. For instance,
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as one attempts to transform the continuum-player graphon game into a mean-field game with augmented state space, the
objective becomes

E
∫
[0,1]

[∑
t∈T

f t(

(
u

Xu,πu

t

)
, µt, at) + g(

(
u

Xu,πu

T

)
, µT )

]
du

where the integral with respect to u over [0, 1] is not well-defined since the integrand is not measureable. A similar argument
demonstrates why we cannot aggregate the objective of all the players in a continuum-player graphon game, since the
mapping [0, 1] ∋ u 7−→ Ju(µ, πu) ∈ R is not measureable, the integral

∫
[0,1]

Ju(µ, πu)du is not well-defined. Thus the
continuum-player graphon game is not mathematically equivalent to our representative-player formulation.

This technical issue can be addressed by carefully enlarging the σ-algebra with rich Fubini extension [(Sun, 2006), section
2], allowing it to hold more information while ensuring the joint measurability and independence (Aurell et al., 2022; Tangpi
& Zhou, 2023). However this approach is restricted to linear-quadratic problems.

On the contrary, our graphon game formulation considers only one representative player. Recall that for any µ ∈
Punif([0, 1]× C), the conditional law of X given U yielded by disintegration is uniquely defined Lebesgue almost surely.
Thus it encodes less information by only considering almost every label u, but this provides great technical convenience and
allow us to consider the game for one player (Lacker & Soret, 2022).

C. A Toy Example on the Difference between the Two Formulations
In this section we compare two types of graphon games formulations on a toy example, inspired by the motivating example
in (Cui & Koeppl, 2021). The two types of formulations of graphon games lead to the same equilibrium in this particular
one-shot game, while the representative-player graphon game is simpler in formulation. When a finite player game contains
larger and continuous state and action spaces with more complex settings, our formulation would demonstrate more
advantage in both analysis and computation. Note that this toy example focus on demonstrating the difference in formulation,
and the measurability issue mentioned in Appendix B.2 is not the main point here as the example is simple enough to be
solved explicitly, and no technical proofs are involved.

The interaction is defined by a threshold graph, where ξnij = 1i+j<n. It is easy to see that Wξn converges in cut norm to a
limit defined by W (u, v) := 1u+v<1. Note that this graphon is discountinuous.

C.1. N-player Game

Consider a one-shot (single-stage) game for n players, and let the state and action space be X = A = {−1, 1}, understood
as left and right. Each player simultaneously chooses either left or right, and is punished by the weighted average of
proportion of players that chose the same action. Precisely,

ai =

{
1 w.p. pi

−1 w.p. 1− pi Xi = ai

where pi is the probability player i choose right (state 1), and this characterizes the policy. Let p = (p1, . . . , pn) and let the
terminal reward be g(x,m) = −⟨m, 1x⟩, where 1x is the indicator function. Player i aims to maximize

J i(p) = −E
( n∑

j=1

ξnij1Xi=Xj

)

= −
n−i∑
j=1

(
pipj + (1− pi)(1− pj)

)
It can be verified that one equilibrium is given by p1 = · · · = pn = 1

2 .

C.2. Representative-player formulation

Consider a one-shot game for a single player, and let the state and action space be X = A = {−1, 1}. Any population
measure µ ∈ Punif([0, 1] × X ) can be characterized by a function q(u) := µ(u, {1}), ∀u ∈ [0, 1]. Let this population
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measure be fixed. The graphon operator is given by

Wµ(u) =

∫
[0,1]

W (u, v)(q(v)δ1 + (1− q(v))δ−1)dv ∈ M+({−1, 1})

where δ is Dirac delta measure. The player is randomly assigned a label U ∼ unif[0, 1], and let π be her policy. Equivalently
the policy can be characterized by p(u) := π(u)({1}). Then she follows the dynamic

a =

{
1 w.p. p(U)

−1 w.p. 1− p(U)
X = a

The objective is

J(q, p) = −E
(
⟨Wµ(U), 1X⟩

)
= −E

(∫
[0,1]

W (U, v)(q(v)1X=1 + (1− q(v))1X=−1)dv

)
= −

∫
u+v<1

(q(v)p(u) + (1− q(v))(1− p(u)))dvdu

Solving this as a calculus of variation problem provides a necessary condition
∫ u

0
q(v)dv = 1

2 , ∀u ∈ [0, 1], and thus the
equilibrium is given by p(u) = 1

2 for a.e. u, and q(v) = 1
2 for a.e. v.

C.3. Continuum-player formulation

Consider a static game for a continuum of players with the same setting, and let the population measure be q := {qu}u∈[0,1]

for qu = µu({1}). Each player u ∼ [0, 1] admits a policy πu as the probability choosing 1, so we may write pu := πu({1})
and denote p := {pu}u∈[0,1]. Then the player u chooses the action

au =

{
1 w.p. pu

−1 w.p. 1− pu Xu = au

and optimize the objective

Ju(q, pu) = −E
(
⟨Wµ(u), 1X⟩

)
= −E

(∫
[0,1]

W (u, v)(qv1X=1 + (1− qv)1X=−1)dv

)
= −

∫ 1−u

0

(qvpu + (1− qv)(1− pu))dv

It is immediate that the equilibrium is given by pu = 1
2 , and qv = 1

2 for almost every u, v. Note that the measurability issue
is not a concern for this specific example, since it can be solved directly and thus doesn’t involve technical analysis.

D. Proof for Existence
D.1. Preliminary Lemmas

Lemma D.1. [Lemma A.2 of (Lacker, 2015)] Let X1 and X2 be Polish spaces. Defined the coordinate projections
Πi : X1 ×X2 → Xi for i = 1, 2. Then a set S ⊂ P(X1 ×X2) is tight if and only if the sets S1 = {µ ◦Π−1

1 : µ ∈ S} and
S2 = {µ ◦Π−1

2 : µ ∈ S} are tight in P(X1) and P(X2) respectively.

Lemma D.2. [Corollary A.5 of (Lacker, 2015)] Let E,F,G be complete, separable metric spaces. ϕ : E × F ×G→ R
is a bounded measurable function, with ϕ(x, ·, ·) being jointly continuous for any x ∈ E. Then the following mapping is
continuous:

G× P(E × F ) ∋ (z, P ) 7→
∫
E×F

ϕ(x, y, z)P (dx, dy)
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Lemma D.3. Let Wn,W be graphons. If Wn L1−→W , then, Wn −→W .

Proof. Fiven any ψ ∈ L∞[0, 1],

∥Wnψ −Wψ∥1 =

∫
[0,1]

∣∣∣Wnψ(u)−Wψ(u)
∣∣∣du

=

∫
[0,1]

∣∣∣ ∫
[0,1]

Wn(u, v)ψ(v)−W (u, v)ψ(v)dv
∣∣∣du

≤ ∥ψ∥∞
∫
[0,1]2

∣∣∣Wn(u, v)−W (u, v)
∣∣∣dvdu

= ∥ψ∥∞∥Wn −W∥1 −→ 0

Lemma D.4. [Lemma 4.2 of (Lacker & Soret, 2022)] Let E be any Polish space, and W be any graphon.

1. For a.e. u ∈ [0, 1], the following map is continuous:

Punif([0, 1]× E) ∋ µ 7→Wµ(u) ∈M+(E)

2. Suppose the map [0, 1] ∋ u 7→W(u, v)dv ∈M+([0, 1]) is continuous, then for any µ ∈ Punif([0, 1]× E),

[0, 1] ∋ u 7→Wµ(u) ∈M+(E)

is continuous.

Lemma D.5. Let E,F be complete, separable metric space, and F is a regular measurable space. Consider a sequence of
probability measures on the product space {νn} ⊂ P(E × F ). Suppose that νn admits disintegration

νn(dx, dy) = µn(dx)K(x, dy)

for some common kernel K, which is continuous as a mapping E → P(F ), i.e. any sequence xn → x implies Kxn
⇒ Kx.

Then if νn ⇒ ν, ν admits a disintegration ν(dx, dy) = µ(dx)K(x, dy) for some µ ∈ P(E).

Proof. Let Π1 be the projection to first coordinate, which is a continuous mapping. By continuous mapping theorem, the
pushforward of a weak convergence measure seqnece under continuous mapping converge weakly:

νn ◦Π−1
1 ⇒ ν ◦Π−1

1 =: µ

Suppose ν admits disintegration ν(dx, dy) = µ(dx)K̄(x, dy) for some K̄. Given ∀ϕ : E × F → R bounded, jointly
continuous, the mapping E ∋ x 7→

∫
F
ϕ(x, y)K(x, dy) ∈ R is bounded and continuous since for any xn → x,∣∣∣∣∫

F

ϕ(xn, y)K(xn, dy)−
∫
F

ϕ(x, y)K(x, dy)

∣∣∣∣
≤

∣∣∣∣∫
F

ϕ(xn, y)K(xn, dy)−
∫
F

ϕ(x, y)K(xn, dy)

∣∣∣∣+ ∣∣∣∣∫
F

ϕ(x, y)K(xn, dy)−
∫
F

ϕ(x, y)K(x, dy)

∣∣∣∣
which converges to 0. Finally, ⟨νn, ϕ⟩ → ⟨ν, ϕ⟩, and on the other hand,

⟨νn, ϕ⟩ =
∫
E×F

ϕ(x, y)K(x, dy)µn(dx) −→
∫
E×F

ϕ(x, y)K(x, dy)µ(dx)

which holds for any ϕ bounded continuous, and we conclude that K is a version of K̄.
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D.2. Existence of Equilibrium

Given any function ϕ : E × A→ F for Polish space E,F and a measure π ∈ P(A), we may also abuse the notation by
writing ϕ as a function E × P(A)→ F , defined by ϕ(x, π) = ⟨π, ϕ(x, ·)⟩ for each x ∈ E.

Throughout the proof we fix a graphon W , and denote V = P(A)T the space of all policies. We fix any policy π ∈ V , and
construct the label-state joint measure of the representative player controlled by π as follows. Recall that at time t given
U = u,Xt = x, αt = a, the law of next state Xt+1 follows the probabilistic kernel [0, 1]× Rd ×A→ Rd

L(Xt+1|Xt = x, Ut = u, αt = a)(dy) = Pt(dy|x,Wµt(u), a) ∀y ∈ Rd

and the control process αt follows

L(αt)(da) = πt(da) ∀a ∈ A

We may thus consider

P̂π,µ
t (dy|u, x) := L(Xt+1|Xt = x, Ut = u)(dy) =

∫
A

Pt(dy|x,Wµt(u), a)πt(da) ∀y ∈ Rd

and we use the superscript to emphasize that the law is controlled by the policy π. Note that VU ∋ π 7→ P̂π,µ
t (u, x) ∈ P(Rd)

is measurable. The collection of kernels {P̂π
t }t∈T (recall T = {0, 1, . . . , T − 1}) along with the initial law λ implies a

label-state joint law in Punif([0, 1]× C)

P̂π,µ(du, dx) := L(U,X)(du, dx) = λ(du, dx0)
∏
t∈T

P̂π,µ
t (dxt+1|u, xt) ∀(u, x) ∈ [0, 1]× C

which is the label-state joint measure of the representative player, when her state dynamic is controlled by π. Since the
space [0, 1]× C is a standard measurable space, this is understood as a regular version of the kernel from V to [0, 1]× C.

Lemma D.6. Under assumption 4.3(5), for any µ ∈ Punif([0, 1] × C), π 7→ P̂π,µ is continuous. In particular, πt 7→
P̂π,µ
t (u, x) is continuous for every (u, x) ∈ [0, 1]× Rd.

Proof. Let {πn} ⊂ V be any sequence of policies such that πn ⇒ π for some π ∈ V . For any ϕ : [0, 1]× C → R bounded
continuous,∫

[0,1]×C
ϕ(u, x)P̂πn,µ(du, dx)

=

∫
[0,1]×Rd

[ ∫
AT

∫
(Rd)T

ϕ(u, x0, . . . , xT )
∏
t∈T

Pt(dxt+1|xt,Wµt(u), at)π
n(da0, . . . , daT−1)

]
λ(du, dx0)

=:

∫
[0,1]×Rd

[ ∫
AT

ψ(a0, . . . , aT−1)π
n(da0, . . . , daT−1)

]
λ(du, dx0)

where

ψ(a0, . . . , aT−1) :=

∫
(Rd)T

ϕ(u, x0, . . . , xT )
∏
t∈T

Pt(dxt+1|xt,Wµt(u), at)

We know that at 7→ Pt(dxt+1|xt,Wµt(u), at) is continuous for each t ∈ T by assumption 4.3(5), and since (Rd)T is
seperable, with standard measure theory argument for weak convergence on product space, for instance chapter 2 of
(Billingsley, 1995), the map ψ is continuous. Thus ⟨πn, ψ⟩ → ⟨π, ψ⟩, and∫

[0,1]×C
ϕ(u, x)P̂πn,µ(du, dx)

−→
∫
[0,1]×Rd

[ ∫
AT

ψ(a0, . . . , aT−1)π(da0, . . . , daT−1)
]
λ(du, dx0)

=

∫
[0,1]×C

ϕ(u, x)P̂π,µ(du, dx)
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Define the probability space Ω := V × [0, 1]× C, equipped with the product σ-algebra. A typical element of Ω is (π, u, x),
where we understood them as a policy, a label of the representative player and the player’s path, respectively. Let the
coordinate maps be Λ, U,X respectively. The filtration is given by Ft = σ{Λ|[t]×A, U, {Xs}0≤s≤t}.

The collection of admissible lawsR(µ) is defined as the set

R(µ) := {R ∈ P(Ω) : R admits disintegration R(dπ, du, dx) = RΛ(dπ)P̂
π,µ(du, dx) for some RΛ ∈ P(V)}

Define a random variable Ξµ : Ω→ R by

Ξµ(π, u, x) :=
∑
t∈T

∫
A

ft(Wµt(u), xt, a)πt(da) + g(xT ,WµT (u)) (16)

where µt is the marginal obtained as the image by (u, x) 7→ (u, xt). In particular, given a policy π ∈ V , let
R(π)(dπ̃, du, dx) := δπ(dπ̃)P̂

π̃,µ(du, dx) be an element of R(µ), where δ is the Dirac measure. It holds that the ob-
jective can be rewritten as

JW (µ, π) = ⟨R(π),Ξµ⟩

thus the expectation ⟨R,Ξµ⟩ is a reformulation of the objective, and a single player’s objective is to find the collection of
measures that maximize this expectation:

R∗(µ) := {R∗ ∈ R(µ) : ⟨R∗,Ξµ⟩ ≥ ⟨R,Ξµ⟩, ∀R ∈ R(µ)} (17)

Define the correspondence (i.e. set valued function, see (Aliprantis & Border, 2006) for an overview) Φ : P([0, 1]× C)→
2P([0,1]×C), given by

Φ(µ) := {R ◦ (U,X)−1 : R ∈ R∗(µ)}

The existence of W−equilibrium is divided into two steps: we first show the existence of optimizer to the optimization
problem (17) over the probability measures, i.e. R∗(µ) is non-empty for any µ; Next, to obtain a W−equilibrium, we aim
to find a fixed point for the correspondence Φ.

Proposition D.7. For ∀µ ∈ Punif([0, 1]× C), the following optimization problem admits optimizer.

sup
R∈R(µ)

⟨R,Ξµ⟩

Proof. We want to show that R 7→ ⟨R,Ξµ⟩ is a continuous mapping on compact space, and thus the maximum of this
mapping is attained. With a direct application of lemma D.2, we immediately conclude that the following map is jointly
continuous:

Gr(R) ∋ (µ,R) 7−→ ⟨R,Ξµ⟩ ∈ R (18)

where Gr denotes the graph of an operator.

It remains to prove thatR(µ) is compact. First we want to showR(µ) is tight for any µ. By lemma D.1, it suffices to show
that the following sets are tight: {R ◦X−1 : R ∈ R(µ)}, {R ◦ U−1 : R ∈ R(µ)}, {R ◦ Λ−1 : R ∈ R(µ)}. The last two
follows immediately from the fact that [0, 1] and A are compact spaces.

Fix any ϵ′ > 0, we could always find some ϵ such that (1− ϵ)T+1 > 1− ϵ′. By assumption 4.3(3) and 4.3(4), let {Kt}t∈T
be compact subsets of Rd such that

inf
u∈[0,1]

λu(K0) > 1− ϵ inf
P̃t∈ζt

P̃t(Kt+1) > 1− ϵ ∀t ∈ T
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Define K =
∏T

t=0Kt, which is a compact subset of C. Then for every R ∈ R(µ), let P̂π,µ(du, dx)RΛ(dπ) be its
disintegration,

(R ◦X−1)(K) = R(V × [0, 1]×K)

=

∫
V×[0,1]×C

1K(x)P̂π,µ(du, dx)RΛ(dπ)

=

∫
V

∫
[0,1]×Rd

[ T−1∏
t=0

∫
A

∫
Rd

1Kt+1(xt+1)Pt(dxt+1|xt,Wµt(u), a)πt(da)
]
1K0(x0)λ(du, dx0)RΛ(dπ)

≥
∫
V

∫
[0,1]

[ T−1∏
t=0

∫
A

(1− ϵ)πt(da)
] ∫

Rd

1K0
(x0)λ

u(dx0)duRΛ(dπ)

≥
∫
V

∫
[0,1]

(1− ϵ)T+1duRΛ(dπ)

= (1− ϵ)T+1 > 1− ϵ′

and thus we have infR∈R(µ)(R ◦X−1)(K) > 1− ϵ′, which implies the tightness of {R ◦X−1 : R ∈ R(µ)}. Note that
if the state space X of dynamic X is compact, then {R ◦X−1 : R ∈ R(µ)} being tight is immediate. By Prokhorov’s
theorem,R(µ) is precompact.

We conclude by showing that R(µ) is closed. Let {Rn} ⊂ R(µ), and Rn ⇒ R. Indeed each Rn admits disintegration
Rn

Λ(dπ)P̂
π,µ(du, dx) for some Rn

Λ ∈ P(V), and the kernel π 7→ P̂π,µ is continuous by lemma D.6. Then lemma D.5
implies that R admits disintegration RΛ(dπ)P̂

π,µ(du, dx) and thus R ∈ R(µ).

Next we show that the correspondence Φ admits a fixed point, and thus the graphon game admits a W -equilibrium.

Proposition D.8. There exists a fixed point µ̂ for the correspondence Φ.

Proof. We aim to apply the Kakutani-Fan-Glicksberg fixed point theorem, which is a classic fixed point theorem for
correspondences, see for instance theorem 17.55 of (Aliprantis & Border, 2006). We need to show the following conditions:
∃K ⊂ P([0, 1]× C) nonempty, convex and compact, such that

1. Φ(µ) ⊂ K for each µ ∈ K.

2. Φ(µ) is nonempty and convex for each µ ∈ K.

3. The graph Gr(Φ) = {(µ, µ′) : µ ∈ K,µ′ ∈ Φ(µ)} is closed.

We start from defining K, note that λ is a fixed initial measure.

K := {λ⊗
T−1∏
t=0

P̂t : P̂t ∈ conv(ζt)}

where conv(·) denotes the closed convex hull of a set, and ⊗ is the combinations of probabilistic kernels on product space.
K is obviously non-empty. By construction, K is the finite cartesian product of convex sets, thus K is convex. To show
K is compact, it suffices to show conv(ζt) is compact for each t ∈ T, since Tychonoff’s theorem asserts that an arbitrary
product of compact spaces is again compact. Indeed, since ζt is tight, and thus precompact by Prokhorov’s theorem, and the
closed convex hull of a precompact set is compact in a locally convex Hausdorff space. Again, if the value space X of X is
compact, let K = P([0, 1]× C) and K is compact automatically.

For each R ∈ R(µ), let it admit the disintegration R = RΛ ⊗ P̂ :

RΛ(dπ)P̂
π,µ(du, dx) =

[
λ(du, dx0)

T−1∏
t=0

∫
A

Pt(dxt+1|xt,Wµt(u), a)πt(da)
]
RΛ(dπ)

23



Graphon Mean Field Games with A Representative Player: Analysis and Learning Algorithm

We claim that for any t ∈ T,

P̂π,µ
t (dxt+1|u, xt) =

∫
A

Pt(dxt+1|xt,Wµt(u), a)πt(da) ∈ conv(ζt)

since it is the limit of convex combinations of Pt(·|xt,Wµt(u), a) ∈ ζt. and thus for any (π, µ) ∈ V × Punif([0, 1]× C),
the measure P̂π,µ ∈ Punif([0, 1]× C) belongs to K. The pushforward of R onto (U,X) coordinate is

(R ◦ (U,X)−1)(du, dx) =

∫
V
P̂π,µ(du, dx)RΛ(dπ)

which is also the limit of a sequence of convex combinations of P̂π,µ(du, dx), indexed by π. Thus by closedness and
compactness of K, R ◦ (U,X)−1 ∈ K, and thus Φ(µ) ⊂ K.

To show the convexity of Φ(µ), we start with showing R(µ) is convex since for any R1 = R1
Λ ⊗ P̂ and R2 = R2

Λ ⊗ P̂
and λ ∈ [0, 1], λR1 + (1− λ)R2 = (λR1

Λ + (1− λ)R2
Λ)⊗ P̂ ∈ R(µ). Convexity ofR∗(µ) follows from the linearity of

R 7→ ⟨P,Ξµ⟩ and the convexity ofR(µ), and thus the convexity of Φ(µ) follows from the linearity of mapR 7→ R◦(U,X)−1

and the convexity ofR∗(µ).

It remains to show the closedness of the graph of Φ, and we first show the closedness of the following set:

{(µ,R) : µ ∈ K,R ∈ R∗(µ)}

Let µn ⇒ µ and Rn ⇒ R with µn, µ ∈ K, Rn ∈ R∗(µn), and R ∈ R. To show that R ∈ R∗(µ), we use the continuity
(18), and for any R′ ∈ R,

⟨R,Ξµ⟩ = lim
n→∞

⟨Rn,Γ
µn⟩ ≥ lim

n→∞
⟨R′,Γµn⟩ = ⟨R′,Ξµ⟩

and thus ⟨R,Ξµ⟩ ≥ ⟨R′,Ξµ⟩ for any R′ ∈ R. The by the continuity of R 7→ R ◦ (U,X)−1 and compactness of K, we have
the closedness of Gr(Φ).

D.3. Closed-loop equilibrium optimal policy

In this section we show the second part of theorem 4.4, that the equilibrium optimal open-loop policy can be made
closed-loop.

Proposition D.9. Let µ ∈ Punif([0, 1]×C), and R ∈ R(µ). Then, there exists a closed-loop optimal policy, in the following
sense: ∃ a measurable function π : T× [0, 1]× Rd → P(A), and R0 ∈ R(µ), such that

1. R0(Λt(da) = πt(U,Xt)(da) ∀t ∈ T) = 1

2.
∫
Ω
ΞµdR0 ≥

∫
Ω
ΞµdR

3. R0 ◦ (U,Xt)
−1 = R ◦ (U,Xt)

−1 ∀t ∈ T

Corollary D.10. There exists a closed-loop equilibrium optimal policy to the graphon game.

Proof. We first find a space (Ω1,F1, R1) supporting a random variable U1, an adapted process X1 valued in Rd, and a
P(A)-valued adpated process Λt s.t.

(U1, X1
0 ) ∼ λ X1

t+1 ∼ Pt(X
1
t ,Wµt(U

1),Λt)

R1 ◦
(
U,X1

)−1
= µ

The existence of such space is guarenteed by reasoning in Appendix D.2. We claim that there exists a measurable
π : T× [0, 1]× Rd → P(A) such that

πt(U
1, X1

t ) = ER1

(Λt |U1, X1
t ) R1 − a.s. ∀t ∈ T
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More precisely, for every bounded measurable ϕ : [0, 1]× Rd ×A→ R,∫
A

ϕ(U1, X1
t , a)πt(U

1, X1
t )(da) = ER1

(∫
A

ϕ(U1, X1
t , a)Λt(da)

∣∣∣U1, X1
t

)
R1 − a.s.,∀t ∈ T

Define a collection of measures, {ηt}t∈T, ηt ∈ P([0, 1]× Rd ×A) by

ηt(C) := ER1

[∫
A

1C(t, U
1
t , X

1
t , a)Λt(da)

]
and let ηt adimits disintegration ηt(du, dx, da) = η′t(du, dx)πt(u, x)(da), where η′t is the marginal of ηt onto [0, 1]× Rd.
Note that actually η′t(du, dx) = µt, since for any measurable F ⊂ [0, 1]× Rd,

η′t(F ) = ηt(F ×A) = ER1

[∫
A

1F (U
1
t , X

1
t )1A(a)Λt(da)

]
= ER1 [

1F (U
1
t , X

1
t )
]
= ⟨R1 ◦ (U,X1)−1, 1F ⟩

Fix ∀t, for any bounded measurable h : ×[0, 1]× Rd → R,

ER1

[
h(U1, X1

t )

∫
A

ϕ(U1, X1
t , a)πt(U

1, X1
t )(da)

]
=

∫
[0,1]×Rd

h(u, x)

∫
A

ϕ(u, x, a)πt(u, x)(da)η
′
t(du, dx)

=

∫
[0,1]×Rd×A

h(u, x)ϕ(u, x, a)ηt(du, dx, da)

= ER1

[
h(U1, X1

t )

∫
A

ϕ(U1, X1
t , a)Λt(da)

]
By definition of conditional expectation, the claim follows.

Construct another probability space (Ω2,F2, R2) as follows: Let Ω2 = [0, 1]× C, U2 and X2 are the coordinate maps, and

R2 := R1 ◦
(
U1, X1

)−1
= µ

In the rest of the proof, we aim to show that U2, X2 follows the dynamic

(U2, X2
0 ) ∼ λ X2

t+1 ∼ Pt(X
2
t ,Wµt(U

2), πt(U
2, X2

t ))

Fix any bounded continuous ψ : Rd → R. For any measurable h : [0, 1]× Rd → R+,

ER2 [
h(U2, X2

t )ψ(X
2
t+1)

]
= ER1 [

h(U1, X1
t )ψ(X

1
t+1)

]
= ER1

[
h(U1, X1

t )ER1

(∫
A

∫
Rd

ψ(y)Pt(Wµt(U
1), X1

t , a)(dy)Λt(da)
∣∣∣U1, X1

t

)]
= ER1

[
h(U1, X1

t )

∫
A

∫
Rd

ψ(y)Pt(Wµt(U
1), X1

t , a)(dy)πt(U
1, X1

t )(da)

]
= ER2

[
h(U2, X2

t )

∫
A

∫
Rd

ψ(y)Pt(Wµt(U
2), X2

t , a)(dy)πt(U
2, X2

t )(da)

]
By definition of conditional expectation, we claim that

ER2 [
ψ(X2

t+1) |U2, X2
t

]
=

∫
A

∫
Rd

ψ(y)P (t, U2,Wµt(U
2), X2

t , a)(dy)πt(U
2, X2

t )(da)
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and note that this holds for any ψ bounded continuous. Finally, let R0 := R2 ◦ ({πt(U2, X2
t )}t∈T , U

2, X2)−1, then
R0 ∈ R(µ), and the objective value is preserved:∫

Ω

ΞµdR0 = ER2

[∑
t∈T

∫
A

f(t, U2, X2
t ,Wµt(U

2), a)π(t, U2, X2
t )(da) + g(X2

T ,WµT (U
2))

]

= ER1

[∑
t∈T

∫
A

f(t, U1, X1
t ,Wµt(U

1), a)πt(U
1, X1

t )(da) + g(X1
T ,WµT (U

1))

]

= ER1

[∑
t∈T

∫
A

f(t, U1, X1
t ,Wµt(U

1), a)Λt(da) + g(X1
T ,WµT (U

1))

]

=

∫
Ω

ΞµdR

Remark D.11. The proof is closely based on (Lacker, 2015), whick utilized a remarkable result called Markovian projection
theorem (or Mimicking theorem), originated from (Brunick & Shreve, 2013). However, the discrete time setting greatly
simplifies the proof and just the definition of conditional expectation would work.

E. Proof for Uniqueness
Let (µ, π) and (ν, ρ) be two different W -equilibrium, and the Markovian state dynamic being Xπ and Xρ respectively. By
construction the processes π and ρ must be different, since otherwise Xπ and Xν would be the same, and then µ and ν will
be the same as well. Therefore, by uniqueness of optimal policy, we have

JW (µ, π)− JW (µ, ρ) > 0 and JW (ν, ρ)− JW (ν, π) > 0

note that the inequalities are strict. Adding them result in

JW (µ, π)− JW (ν, π)− (JW (µ, ρ)− JW (ν, ρ)) > 0 (19)

Since the Markovian dynamic does not depend on the measure argument, when the population meausre is µ, the dynamic
controlled by policy ρ is the same pathwise as Xρ. This is not true if the assumption is not satisfied, since

Xπ
t+1 ∼ Pt(X

π
t ,Wµt(U), πt) Xρ

t+1 ∼ Pt(X
ρ
t ,Wνt(U), ρt)

and under population measure µ, the process controlled by ρ follows the dynamic X
′

t+1 ∼ Pt(X
′

t ,Wµt(U), ρt), which is
not the same as Xρ. Continue with the proof,

JW (µ, π)− JW (ν, π) = E
[∑

t∈T

(
f1t (X

π
t ,Wµt(U))− f1t (Xπ

t ,Wνt(U))
)

+
∑
t∈T

(
f2t (X

π
t , π)− f2t (Xπ

t , π)
)
+ g(Xπ

T ,WµT (U))− g(Xπ
T ,WνT (U))

]
=
∑
t∈T

∫
[0,1]×Rd

[
f1t (x,Wµt(u))− f1t (x,Wνt(u))

]
µt(du, dx)

+

∫
[0,1]×Rd

[
g(x,WµT (u))− g(x,WνT (u)

]
µT (du, dx)

Similarly,

JW (µ, ρ)− JW (ν, ρ) =
∑
t∈T

∫
[0,1]×Rd

[
f1t (x,Wµt(u))− f1t (x,Wνt(u))

]
νt(du, dx)

+

∫
[0,1]×Rd

[
g(x,WµT (u))− g(x,WνT (u)

]
νT (du, dx)
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Taking difference,

JW (µ, π)− JW (ν, π)− (JW (µ, ρ)− JW (ν, ρ))

=
∑
t∈T

∫
[0,1]×Rd

[
f1t (x,Wµt(u))− f1t (x,Wνt(u))

]
(µt − νt)(du, dx)

+

∫
[0,1]×Rd

[
g(x,WµT (u))− g(x,WνT (u)

]
(µT − νT )(du, dx)

≤ 0

by the assumed Larsy-Lions monotonicity. However this contradicts (19), and we conclude that µ and ν should be the same.

F. Proof for Approximate Equilibrium
F.1. Comparable dynamics

Define Ini := [(i − 1)/n, i/n) for i = 1, . . . , n − 1, Inn := [(n − 1)/n, 1], and In := In1 × · · · × Inn . Let (µ, π) be a
W -equilibrium, and X is the Markov chain controlled by policy π. Let Xu denote the state process conditional on U = u.

Fix ∀n ∈ N, and any un = (un1 , . . . , u
n
n) ∈ [0, 1]n. Assign player i the policy

π̂n,un,i(t, x1, . . . , xn) := π(t, uni , xi)

and let X̂n,un

= (X̂n,un,1, . . . , X̂n,un,n) be the state dynamic of all the players

X̂n,un,i
t+1 ∼ Pt(X̂

n,un,i
t , M̂n,un,i

t , π̂n,un,i
t (X̂n,un

t )) X̂n,un,i
0 ∼ λun

i

where

M̂n,un,i :=
1

n

n∑
r=1

ξnirδX̂n,un,r

and M̂n,un,i
t is the time t marginal. Let X̂n,un,β,j denote the dynamic of player j when she change her policy from π̂n,un,j

to β. More specifically, player j follows

X̂n,un,β,j
t+1 ∼ Pt(X̂

n,un,j
t , M̂

n,un,(β,j),j
t , βt) X̂n,un,β,j

0 ∼ λun
j

and all other player i ̸= j follows

X̂n,un,i
t+1 ∼ Pt(X̂

n,un,i
t , M̂

n,un,(β,j),i
t , π̂n,un,i

t (Xn,un,β,j
t )) X̂n,un,i

0 ∼ λun
i

where the empirical neighborhood measure is

M̂n,un,(β,j),i :=
1

n

∑
r ̸=j

ξnirδX̂n,un,r + ξijδX̂n,un,β,j


and Xn,un,β,j denotes the vector Xn,un

with the jth element replaced by X̂n,un,β,j .

For ∀u ∈ [0, 1],we define Xπ,u to be the process with marginal U = u, controled by policy π, i.e.,

Xπ,u
t+1 ∼ Pt(X

π,u
t ,Wµt(u), π(t, u,X

π,u
t )) Xπ,u

0 ∼ λu

Proposition F.1. Assume assumption 4.7 holds. Let h : [0, 1]× Rd ×M+(Rd)→ R be a bounded measurable function
such that h(u, ·, ·) is jointly continuous on Rd ×M+(Rd) for each fixed u. Then for each t ∈ T,

1

n

n∑
i=1

E[h(Un
i , X̂

n,Un,i
t , M̂n,Un,i

t )]→ E[h(U,Xt,Wµt(U))] (20)
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Proof. Expand the underlying probability space such that it supports independent random elements (Un
i , Y

n,i), ∀i ∈ [n],
independent of X̂n,un

and (U,X), and the law satisfies

L(Y n,i|Un
i = u) = L(X|U = u) ∀u ∈ Ini

equivalently, this means for ∀u ∈ Ini , the conditional law satisfies

Y n,i
t+1|(Un

i = u) ∼ P (t, Y n,i
t ,Wµt(u), πt(u, Y

n,i
t ))

In particular for every measurable ϕ : [0, 1]× C → R,

⟨µ, ϕ⟩ = Eϕ(U,X) =
1

n

n∑
i=1

Eϕ(Un
i , Y

n,i) (21)

Define empirical neighborhood measure

Mn,i :=
1

n

n∑
j=1

ξnijδY n,j =
1

n

n∑
j=1

Wξn(U
n
i , U

n
j )δY n,j

and empirical label-state joint measure

µn :=
1

n

n∑
j=1

δ(Un
i ,Y n,i)

The theorem is then shown in the following two stages:

1

n

n∑
i=1

E[h(Un
i , X̂

n,Un,i
t , M̂n,Un,i

t )]→ 1

n

n∑
i=1

E[h(Un
i , Y

n,i
t ,Mn,i

t )]→ E[h(U,Xt,Wµt(U))]

Step i. We first show that Wξnµ
n(U) ⇒ Wµ(U) in probability. Fix a bounded continuous function ϕ : Rd → [−1, 1],

it suffices to show ⟨Wξnµ
n(U), ϕ⟩ → ⟨Wµ(U), ϕ⟩ in probability. This is divided into two substeps. We first claim that

⟨Wξnµ
n(U), ϕ⟩ − E[⟨Wξnµ

n(U), ϕ⟩|U ]→ 0 in probability. Note that

⟨Wξnµ
n(u), ϕ⟩ = 1

n

n∑
j=1

Wξn(u, U
n
j )ϕ(Y

n,i)

For u ∈ Ini , by independence of Y n,i,

var(⟨Wξnµ
n(U), ϕ⟩|U = u) = var(

1

n

n∑
j=1

ξnijϕ(Y
n,i)) ≤ 1

n2

n∑
j=1

(ξnij)
2

Then

E
[
(⟨Wξnµ

n(U), ϕ⟩ − E[⟨Wξnµ
n(U), ϕ⟩|U ])2

]
= E [var(⟨Wξnµ

n(U), ϕ⟩|U)]

=

n∑
i=1

∫
In
i

var(⟨Wξnµ
n(U), ϕ⟩|U = u)du

≤ 1

n3

n∑
i,j=1

(ξnij)
2 → 0
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by assumption in equation 10, thus the convergence is in L2. In the second substep we show that E[⟨Wξnµ
n(U), ϕ⟩|U ]→

⟨Wµ(U), ϕ⟩ in probability. By independence of (Un
i , Y

n,i),

E[⟨Wξnµ
n(U), ϕ⟩|U = u] = E[

1

n

n∑
j=1

Wξn(u, U
n
j )ϕ(Y

n,i)]

= E[Wξn(u, U)ϕ(X)]

=

∫
[0,1]

Wξn(u, v)E[ϕ(X)|U = v]dv

where we used identity (21). Similarly

⟨Wµ(u), ϕ⟩ = E[W (u, U)ϕ(X)] =

∫
[0,1]

W (u, v)E[ϕ(X)|U = v]dv

Thus

E [|E[⟨Wξnµ
n(U), ϕ⟩|U ]− ⟨Wµ(U), ϕ⟩|] =

∫
[0,1]

∣∣∣∣∣
∫
[0,1]

(Wξn(u, v)−W (u, v))E[ϕ(X)|U = v]dv

∣∣∣∣∣ du
= ∥(Wξn −W)ϕ∥L1[0,1]

By the assumption that Wξn → W in the strong operator topology, the right-hand side goes to 0 and thus
E[⟨Wξnµ

n(U), ϕ⟩|U ]→ ⟨Wµ(U), ϕ⟩ in L1. This conclude the first step.

Step ii. We next show by induction the following holds for each t ∈ T:

1

n

n∑
i=1

E[h(Un
i , X̂

n,Un,i
t , M̂n,Un,i

t )]→ 1

n

n∑
i=1

E[h(Un
i , Y

n,i
t ,Mn,i

t )] (22)

This is trivially true at time 0, since X̂n,Un,i are initialized independently, we have L(Un
i , X̂

n,Un,i
0 ) = L(Un

i , Y
n,i
0 ), and

thus

1

n

n∑
i=1

E[h(Un
i , X̂

n,Un,i
0 , M̂n,Un,i

0 )] =
1

n

n∑
i=1

E[h(Un
i , Y

n,i
0 ,Mn,i

0 )]

Now assume (22) holds for time t− 1. We have

1

n

n∑
i=1

(
E[h(Un

i , X̂
n,Un,i
t , M̂n,Un,i

t )]− E[h(Un
i , Y

n,i
t ,Mn,i

t )]
)

≤ 1

n

n∑
i=1

(
E[h(Un

i , X̂
n,Un,i
t , M̂n,Un,i

t )]− E[h(Un
i , X̂

n,Un,i
t ,Mn,i

t )]
)

+
1

n

n∑
i=1

(
E[h(Un

i , X̂
n,Un,i
t ,Mn,i

t )]− E[h(Un
i , Y

n,i
t ,Mn,i

t )]
)

= I + II

Denote Fn
t := σ({Un

i }ni=1, {X̂n,Un,i
s }ni=1, {Y n,i

s }ni=1, s ≤ t). For term I, we note that X̂n,Un,i
t and X̂n,Un,j

t are indepen-
dent conditional on Fn

t−1, and

E[h(Un
i , X̂

n,Un,i
t , M̂n,Un,i

t )− h(u, X̂n,Un,i
t ,Mn,i

t ) | Fn
t−1, X̂

n,Un,i
t ]

=

∫
(Rd)n−1

h

(
Un
i , X̂

n,Un,i
t ,

1

n

n∑
j=1

ξnijδxj

)∏
j ̸=i

P̂n,Un,j
t−1 (dxj)

−
∫
(Rd)n−1

h

(
Un
i , X̂

n,Un,i
t ,

1

n

n∑
j=1

ξnijδyj

)∏
j ̸=i

Pn,j
t−1(dy

j)
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where we use a shorthand notation

P̂n,Un,i
s := Ps(X̂

n,Un,i
s , M̂n,Un,i

s , πs(U
n
i , X̂

n,Un,i
s ))

Pn,i
s := Ps(Y

n,i
s ,Wµs(U

n
i ), πs(U

n
i , Y

n,i
s ))

More specifically, define the function h
′
: [0, 1]× Rd ×M+(Rd),

h
′
(u, x,m) :=

∫
(Rd)n−1

h

(
Un
i , X̂

n,Un,i
t ,

1

n

n∑
j=1

ξnijδxj

)∏
j ̸=i

Pt−1(x,m, πt−1(u, x))(dx
j)

Then

I =
1

n

n∑
i=1

(
h

′
(Un

i , X̂
n,Un,i
t−1 , M̂n,Un,i

t−1 )− h
′
(Un

i , Y
n,i
t−1,Wµt−1(U

n
i ))

)
Similarly for II, note that Y n,i are independent,

E[h(u, X̂n,Un,i
t ,Mn,i

t )− h(Un
i , Y

n,i
t ,Mn,i

t ) | Fn
t−1, Y

n,j
t , j ̸= i]

=

∫
(Rd)n−1

h(Un
i , x

i,Mn,i
t )P̂n,Un,i

t−1 (dxi)− h(Un
i , y

i,Mn,i
t )Pn,i

t−1(dy
i)

by defining the function h
′′
: [0, 1]× Rd ×M+(Rd),

h
′′
(u, x,m) :=

∫
(Rd)n−1

h(u, xi,Mn,i
t )Pt−1(x,m, πt−1(u, x))(dx

i)

and

II ≤ 1

n

n∑
i=1

(
h

′′
(Un

i , X̂
n,Un,i
t−1 , M̂n,Un,i

t−1 )− h
′′
(Un

i , Y
n,i
t−1,Wµt−1(U

n
i ))

)

Note that by the assumption that h and P are continuous, h
′
(t, ·, ·) and h

′′
(t, ·, ·) are jointly continuous for every t ∈ T .

Combining I and II, by tower property,

1

n

n∑
i=1

(
E[h(Un

i , X̂
n,Un,i
t , M̂n,Un,i

t )]− E[h(Un
i , Y

n,i
t ,Mn,i

t )]
)

≤ I + II

≤ 1

n

n∑
i=1

E[(h
′
+ h

′′
)(Un

i , X̂
n,Un,i
t−1 , M̂n,Un,i

t−1 )]− 1

n

n∑
i=1

E[(h
′
+ h

′′
)(Un

i , Y
n,i
t−1,M

n,i
t−1)]

+
1

n

n∑
i=1

E[(h
′
+ h

′′
)(Un

i , Y
n,i
t−1,M

n,i
t−1)]−

1

n

n∑
i=1

E[(h
′
+ h

′′
)(Un

i , Y
n,i
t−1,Wµt−1(U

n
i ))]

= I′ + II′

by our assumption on time t − 1, I′ → 0. In step (i) we proved that Wξnµ
n(U) → Wµ(U). It is straightforward

to show Wξnµ
n(Un

i ) → Wµ(Un
i ) with the same line of reasoning. Rewrite Wξnµ

n(Un
i ) = Mn,i, we actually have

Mn,i →Wµ(Un
i ) in probability. Combined with the boundedness of integrand, the convergences is in L1 and thus II′ → 0.

Step iii. Finally, we aim to show,

1

n

n∑
i=1

Eh(Un
i , Y

n,i,Mn,i)→ E[h(U,X,Wµ(U))]

This is justfied with similar argument as in (Lacker & Soret, 2022) theorem 6.1, and this concludes the theorem.
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F.2. Proof of theorem 4.8

Recall the definition of ϵn(un) in definition 3.1, we have

ϵni (u
n) := sup

β∈An

Ji(π
n,un,1, . . . , πn,un,i−1, β, πn,un,i+1, . . . , πn,un,n)− Ji(πn,un

)

≤ sup
β∈An

∆n,i
1 (β,un) + sup

β∈An

∆n,i
2 (β,un) + sup

β∈An

∆n,i
3 (β,un) + ∆n,i

4 (un) + ∆n,i
5 (un)

where

∆n,i
1 (β,un) := E

[∑
t∈T

f i(t, X̂n,un,β,i
t , M̂

n,un,(β,i),i
t , βt) + g(X̂n,un,β,i

T , M̂
n,un,(β,i),i
T )

]

− E

[∑
t∈T

f i(t, X̂n,un,β,i
t ,Wµt(u

n
i ), βt) + g(X̂n,un,β,i

T ,WµT (u
n
i ))

]

∆n,i
2 (β,un) := E

[∑
t∈T

f i(t, X̂n,un,β,i
t ,Wµt(u

n
i ), βt) + g(X̂n,un,β,i

T ,WµT (u
n
i ))

]

− E

[∑
t∈T

f i(t,X
β,un

i
t ,Wµt(u

n
i ), βt) + g(X

β,un
i

T ,WµT (u
n
i ))

]

∆n,i
3 (β,un) := E

[∑
t∈T

f i(t,X
β,un

i
t ,Wµt(u

n
i ), βt) + g(X

β,un
i

T ,WµT (u
n
i ))

]

− E

[∑
t∈T

f i(t,Xun
i ,Wµt(u

n
i ), πt(u

n
i , X̂

n,un,i
t )) + g(Xun

i ,WµT (u
n
i ))

]

∆n,i
4 (un) := E

[∑
t∈T

f i(t,Xun
i ,Wµt(u

n
i ), πt(u

n
i , X̂

n,un,i
t )) + g(Xun

i ,WµT (u
n
i ))

]

− E

[∑
t∈T

f i(t, X̂n,un,i
t ,Wµt(u

n
i ), πt(u

n
i , X̂

n,un,i
t )) + g(X̂n,un,i

T ,WµT (u
n
i ))

]

∆n,i
5 (un) := E

[∑
t∈T

f i(t, X̂n,un,i
t ,Wµt(u

n
i ), πt(u

n
i , X̂

n,un,i
t )) + g(X̂n,un,i

T ,WµT (u
n
i ))

]

− E

[∑
t∈T

f i(t, X̂n,un,i
t , M̂n,un,i

t , πt(u
n
i , X̂

n,un,i
t )) + g(X̂n,un,i

T , M̂n,un,i
T )

]

and the βt in these formula are short for βt(X̂
n,un,β,i

t ), for closed-loop control β : T× Rd → P(A).
Lemma F.2. [Lemma 5.1 of (Lacker & Soret, 2022)] Fix µ ∈ Punif([0, 1] × C), u ∈ [0, 1]. For any policy π ∈ A1 and
m ∈ P(Rd), define

Xm,π
t+1 ∼ P (t,X

m,π
t ,Wµt(u), π(t,X

m,π
t )) Xm,π

0 ∼ m

and

Ju,m
W (µ, π) := E

[∑
t∈T

f(t,Xm,π
t ,Wµt(u), π(t,X

m,π
t )) + g(Xm,π

T ,WµT (u))

]
If π ∈ AU is an optimal policy, in the sense that JW (µ, π) ≥ JW (µ, β) for all β ∈ AU , then

Ju,λu

W (µ, πu) = sup
β∈A1

Ju,λu

W (µ, β) (23)

where πu(t, x) := π(t, u, x).
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Remark F.3. With similar notation as in the proof for equilibrium existence (Appendix D.2), we may denote

Ru,λu
(µ) := {R ∈ R(µ) ⊂ P(V × [0, 1]× C) : R ◦ U−1 = δun

i
, R ◦X−1

0 = λu}

The joint law L(π, u,Xλu,π) ∈ Ru,λu
(µ), and for any β ∈ VU , L(β, u,Xλu,β) ∈ Ru,λu

(µ), note that β can be any
open-loop policy. Thus equation (23) can be rewritten as 3

⟨L(π, u,Xλu,π),Ξµ⟩ ≥ ⟨R,Ξµ⟩ ∀R ∈ Ru,λu
(µ)

where Ξµ is defined in equation (16). This view simplifies the analysis of the following lemma.

Lemma F.4. supβ∈An
∆n,i

3 (β,un) ≤ 0 for a.e. un ∈ [0, 1]n and all i ∈ [n].

Proof. By construction, L(Xun
i ) = L(Xλun

i
,πun

i ), then the second term of ∆n,i
3 (β,un) is actually J

un
i ,λun

i

W (µ, πu). On the
other hand, the joint law L(β, uni , Xβ,un

i ) ∈ Run
i ,λun

i
(µ). Thus by remark F.3, we deduce

sup
β∈An

∆n,i
3 (β,un) ≤ sup

β∈A1

J
un
i ,λun

i

W (µ, π∗
u)− J

un
i ,λun

i

W (µ, π∗
u)

and following lemma F.2 equation (23), this is ≤ 0 for a.e. un ∈ [0, 1]n and all i ∈ [n].

Take average, we have

1

n

n∑
i=1

ϵni (u
n) ≤ 1

n

n∑
i=1

sup
β∈An

∆n,i
1 (β,un) +

1

n

n∑
i=1

sup
β∈An

∆n,i
2 (β,un) +

1

n

n∑
i=1

∆n,i
4 (un) +

1

n

n∑
i=1

∆n,i
5 (un) (24)

By assumption 4.3, it’s straightforward to see that {L(X̂n,un,β,i) : (n,un, β, i) ∈ N+ × In × V × [n]} is a tight collection
of measures in P(C). Let K ⊂ C be a compact subset s.t. supn,un,β,i P(X̂n,un,β,i /∈ K) ≤ η for some fixed η > 0. Define
function h1 : [0, 1]×M+(C)→ R by

h1(u,m) :=
∑
t∈T

sup
a∈A

sup
z∈K

(
|f(t, zt,Wµt(u), a)− f(t, zt,mt, a)|+ |g(zT ,WµT (u))− g(zT ,mT )|

)
Similarly, define

h2(u, x) :=
∑
t∈T

sup
a∈A

sup
z∈K

( ∣∣Ef i(t, zt,Wµt(u), a)− f i(t, xt,Wµt(u), a)
∣∣− |Eg(zT ,WµT (u))− g(xT ,WµT (u))|

)
Function h1 and h2 are bounded measurable since f and g are bounded continuous [(Aliprantis & Border, 2006), theorem
18.19]. Moreover, it follows from the compactness of A and K that h1(u, ·) is continuous onM+(C) for a.e. u, and h2(u, ·)
is continuous on E for a.e. u. Note that (h1, h2)(U,Xt,Wµ(U)) = 0. We many thus use h1 to bound ∆1 and ∆5, use h2 to
bound ∆2 and ∆4. To address the region outside K, let C be a constant s.t. max(|f |, |g|) ≤ C, and equation (24) becomes

1

n

n∑
i=1

ϵni (u
n) ≤ 2

n

n∑
i=1

E
[
h1(u

n
i , M̂

n,un,i
t )

]
+

2

n

n∑
i=1

E
[
h2(u

n
i , X̂

n,un,i
t )

]
+ 8ηC

by Proposition F.1,

E

[
1

n

n∑
i=1

ϵni (U
n)

]
≤ 2

n

n∑
i=1

E
[
h1(U

n
i , M̂

n,Un,i
t )

]
+

2

n

n∑
i=1

E
[
h2(U

n
i , X̂

n,Un,i
t )

]
+ 8ηC

−→ 2E [h1(U,Wµt(U))] + 2E [h2(U,Xt)] + 8ηC

= 8ηC

the proof for theorem 4.8 is concluded by letting η → 0.

3Indeed it might not be directly obvious why ⟨L(π, u,Xλu,π),Ξµ⟩ ≥ ⟨R,Ξµ⟩ holds for all R ∈ Ru,λu(µ), since R might induce
open-loop policies while the supremum in equation (23) is over A1. This actually can be showed rigorously, however, and the reader may
refer to Lemma 5.1 of (Lacker & Soret, 2022) for a proof.
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G. Proof for Online Learning Sample Complexity
G.1. A concrete algorithm realization

For clarity, we present Algorithm 1 combined with subroutine (14) in Algorithm 2.

Algorithm 2 Oracle-free Learning for GMFG

Initialize Q0,0 = {Q0,0
d }Dd=1 and M0,0 = {M0,0

d }Dd=1

for k ← 0 to K − 1 do
for d← 1 to D do

Sample initial state x0 ∼Mk,0
d , action a0 ∼ Γπ(Q

k,0
d )

for τ ← 0 to H do
Sample reward rτ = f(xτ ,WΠDM

k,0(ud), aτ ), next state xτ+1 ∼ P (xτ ,WΠDM
k,0(ud), aτ ), and action

aτ+1 ∼ Γπ(Q
k,τ
d )

Update Q-function:
Qk,τ+1

d (xτ , aτ )← (1− ατ )Q
k,τ
d (xτ , aτ ) + ατ

(
rτ + γQk,τ

d (xτ+1, aτ+1)
)

Update population measure:
Mk,τ+1

d ← (1− βτ )Mk,τ
d + βτδxτ+1

end for
Let Qk+1,0

d = Qk,H
d and Mk+1,0

d =Mk,H
d

end for
end for
Return policy π(K) := Γπ(ΠDQ

K,0) and population measure µ(K) := ΠDM
K,0, where QK,0 = {QK,0

d }Dd=1 and
MK,0 = {MK,0

d }Dd=1

Algorithm 3 Oracle-free Learning for GMFG - Finite Horizon

Initialize: time horizon T , Q0,0:T = {Q0,0:T
d }Dd=1 and M0,0:T = {M0,0:T

d }Dd=1

for k ← 0 to K − 1 do
for d← 1 to D do

Sample initial state x0 ∼Mk,0
d

for t← 0 to T − 1 do
Choose action at from Qk,t

d (x, .)
Sample reward rt = f(xt,WΠDM

k,t(ud), at), next state xt+1 ∼ P (xt,WΠDM
k,t(ud), at)

Update population measure:
Mk,t+1

d ← (1− βk)Mk,t
d + βkδxt+1

Update Q-function:
Qk,t

d (xt, at)← (1− αk)Q
k,t
d (xt, at) + αk

(
rt + γQk,t+1

d (xt+1, at+1)
)

end for
end for

end for
Return policy π(K) := Γπ(ΠDQ

K,0:T ) and population measure µ(K) := ΠDM
K,0:T , where QK,0:T = {QK,0:T

d }Dd=1

and MK,0:T = {MK,0:T
d }Dd=1

Algo. 3 is adapted from Algo. 2 to solve GMFGs with finite time horizons. The difference between two algorithms lies in
the learning rate. In Algo. 3, the learning rate has to capture each time step t in the time horizon T . Therefore, we have
βk = 1

1+#(t,k) and αk = 1
1+#(x,a,t,k) , where #(t, k) counts the number of visits to time step t up to epoch k. #(x, a, t, k)

counts the number of visits to tuple (x, a, t) up to epoch k.

33



Graphon Mean Field Games with A Representative Player: Analysis and Learning Algorithm

G.2. Discretization of label space

Recall that U := {u1, . . . , uD} is the discretization of label space, and ΠD : [0, 1] → U is the projection mapping. We
define the operator ΠD which maps operators defined on U to operators defined on [0, 1]: for any operator ϕ̃ defined on U ,

ΠDϕ̃(u) :=

D∑
d=1

ϕ̃(ud)1{u∈Iud
},

generalizing it to a function on [0, 1]. In particular, for µ̃ = {µ̃ud}Dd=1 ∈ M(X )U , we regard ΠDµ̃ as both the kernel
ν : [0, 1]→M(X ) given by

ν(u) :=

D∑
d=1

µ̃ud1{u∈Iud
}.

and also a measure in Munif([0, 1] × X ), constructed by Leb ⊗ ν. Here we denoteM(X ) the collection of all Borel
measures with finite variation on X , andMunif([0, 1] × X ) the collection of all Borel measures with finite variation on
[0, 1]×X with uniform first marginal.

In addition to ΠD, we define a set value mapping Π†
D : U → 2[0,1] by Π†

D(ud) = Id for any ud ∈ U . The operator Π†
D

maps operators defined on [0, 1] to operators defined on U . For any operator ϕ defined on [0, 1],

Π†
Dϕ(ud) := ϕ(ud) ud ∈ U

Note that Π†
DΠD = IdU , while the inverse is not necessarily true.

Lemma G.1. The operator norm of ΠD :M(X )U →Munif([0, 1] × X ) is bounded by 1, where we equip the product
spaceM(X )U with the norm ∥µ̃∥ = supud∈U ∥µ̃ud∥TV, ∀µ̃ = {µ̃ud}Dd=1 ∈M(X )U .

Proof. It holds for any µ̃ ∈M(X )U that

∥ΠDµ̃∥TV = sup
∥ϕ∥∞≤1

∣∣∣ ∫
[0,1]×X

ϕ(u, x)ΠDµ̃(du, dx)
∣∣∣

≤
D∑

d=1

sup
∥ϕ∥∞≤1

∫
Iud

∣∣∣ ∫
X
ϕ(u, x)µ̃ud(dx)

∣∣∣du
≤

D∑
d=1

∫
Iud

∥µ̃ud∥TVdu ≤ sup
ud∈U

∥µ̃ud∥TV = ∥µ̃∥

The following lemma ensures the discretization U a good approximation of the label space.
Lemma G.2. For any µ ∈ Punif([0, 1]×X ), we have

sup
u∈[0.1]

∥Wµ(u)−Wµ(ΠD(u))∥TV ≤
Ld

D

Proof. Recall the definition of total variation norm,

sup
u∈[0,1]

∥Wµ(u)−Wµ(ΠD(u))∥TV =sup
u

sup
∥ϕ∥∞≤1

∣∣∣∣∣
∫
[0,1]×X

(W (u, v)−W (ΠD(u), v))ϕ(x)µ(dv, dx)

∣∣∣∣∣
≤ sup

u

∫
[0,1]

∣∣∣(W (u, v)−W (ΠD(u), v))
∣∣∣dv

≤Ld

D
.
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G.3. Best response and induced population operator

Recall Q is the collection of all [0, 1] × X × A → R functions, for any µ ∈ Punif([0, 1] × X ), the Bellman (optimality)
operator Tµ : Q → Q is defined by

Tµq(u, x, a) = f(x,Wµ(u), a) + γ⟨P (x,Wµ(u), a), sup
a∈A

q(u, ·, a)⟩

for any q ∈ Q. It is known that Tµ is a γ-contraction mapping, thus a unique fixed point exists and denote Qµ the fixed
point of Tµ. Let the value function be vµ(u, x) := supa∈AQ

µ(u, x, a).

BR and IP operator. The FPI Γ, given by Γ(µ) = Γ2(Γ1(µ), µ), can be alternatively decomposite into best response
(BR) w.r.t. the current population and the induced population (IP) w.r.t. the current policy. Define the BR operator
ΓBR : Punif([0, 1]×X )→ Q by ΓBR(µ) = Qµ where Qµ is the fixed point of Tµ.

The IP operator ΓIP : Q× Punif([0, 1]× X ) → Punif([0, 1]× X ) is defined by ΓIP(Q,µ) = L(U,X) where X follows
the Markov transition with population measure µ, and under policy Γπ(Q).

Actually, Γπ ◦ ΓBR(µ) = Γ1(µ), and ΓIP(Q,µ) = Γ2(Γπ(Q), µ), and we have Γ(µ) = Γ2(Γ1(µ), µ) = ΓIP(ΓBR(µ), µ).
However, both ΓBR and ΓIP are defined in terms of Q, where the label space [0, 1] is continuous. Thus we define the
following operators with Q-functions on U .

Discretized BR and IP operator. Let Q̃ be the collection of all L2-integrable U × X ×A→ R functions, we define the
discretized BR operator Γ̃BR : Punif([0, 1]×X )→ Q̃ by Γ̃BR(µ) = Q̃µ where

Q̃µ(ud, x, a) := f(x,Wµ(ud), a) + ⟨P (x,Wµ(ud), a), v
µ(ud, ·)⟩ ∀ud ∈ U

Γ̃BR returnsD best responses for labels in U w.r.t. population distribution µ. In particular, Q̃µ andQµ coincide at U×X ×A.

The discretized IP operator Γ̃IP : Q̃× Punif([0, 1]×X )→ P(X )U is defined by Γ̃IP(Q̃, µ) = L(U,X) where X follows
the Markov transition with population measure µ, and under policy Γπ(Q̃), conditional on U ∈ U . In other words, it is the
induced state distribution on P(X )U for the D classes.

For notation simplicity, we denote ΓIPΓBR(µ) = ΓIP(ΓBR(µ), µ), similarly for Γ̃IPΓ̃BR.

Algorithm operator. Finally, the algorithm operator Γ̂ : P(X )U → P(X )U is defined by

Γ̂ : {Mk,0
d }

D
d=1 7→ {M

k,H
d }Dd=1

It returns the updated D-class population measure after an outer iteration of Algorithm 2, consisting of H online stochastic
updates to the D-class Q- and M-value functions.

Given the initial D-class population estimate M0 := {M0,0
d }Dd=1 ∈ P(X )U , we can express Algorithm 2 as

ΠDΓ̂KM0 = ΠD

(
Γ̂Π†

DΠD

)K

M0 =
(
ΠDΓ̂Π†

D

)K

ΠDM0. (25)

G.4. Sample Complexity Analysis

Our analysis follows the following illustration:

ΠDΓ̂KM0︸ ︷︷ ︸
Algorithm 2

approximates−−−−−−−→
(
ΠDΓ̃IPΓ̃BR

)K

ΠDM0︸ ︷︷ ︸
Finite-label FPI

approximates−−−−−−−→ (ΓIPΓBR)
K
ΠDM0︸ ︷︷ ︸

FPI

,

We are ready to give the one-step approximation error of Algorithm 2.
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Proposition G.3. For any ν ∈ ΠDP(X )U , we have

E
∥∥∥(ΓIPΓBR −ΠDΓ̂Π†

D

)
ν
∥∥∥2
TV

= O

(
D logH

H
+

1

D2

)
.

Proof. Consider the decomposition

E
∥∥∥(ΓIPΓBR −ΠDΓ̂Π†

D

)
ν
∥∥∥2
TV
≤3E

∥∥∥ΓIP

(
ΓBR −ΠDΓ̃BR

)
ν
∥∥∥2
TV︸ ︷︷ ︸

G1

+ 3E
∥∥∥(ΓIPΠD −ΠDΓ̃IP

)
Γ̃BRν

∥∥∥2
TV︸ ︷︷ ︸

G2

+ 3E
∥∥∥ΠD

(
Γ̃IPΓ̃BR − Γ̂Π†

D

)
ν
∥∥∥2
TV︸ ︷︷ ︸

G3

.

Note that the kernel resulting from disintegration is only Lebesgue a.e. defined, however, we only consider those ν ∈
ΠDP(X )U , i.e. there exists some M ∈ P(X )U such that ν = ΠDM , and thus Π†

Dν =M is unique without ambiguity.

Let q := ΓBRν and µ := ΓIP(q, ν) = ΓIPΓBRν. Similarly let q̃ := Γ̃BRν and µ̃ := ΓIP(ΠD q̃, ν) = ΓIP(ΠDΓ̃BRν, ν). To
distinguish, µ, µ̃ ∈ Punif([0, 1]×X ), q ∈ Q, q̃ ∈ Q̃. Then, we have

√
G1 = ∥µ− µ̃∥TV ≤ sup

∥ϕ∥∞≤1

∫
[0,1]

∣∣∣ ∫
X
ϕ(u, x)(µu − µ̃u)(dx)

∣∣∣du
≤

∫
[0,1]

∥µu − µ̃u∥TVdu

≤ sup
u∈[0,1]

∥µu − µ̃u∥TV

Since µu and µ̃u are the law of process X|U = u with the same transition kernel, by Anonymous (2024, Lemma 4), we
have for almost every u,

∥µu − µ̃u∥TV ≤ Lπσ ∥q(u, ·)− q(ΠD(u), ·)∥2 ≤ Lπσ
√
|X ||A| ∥q(u, ·)− q(ΠD(u), ·)∥∞

which gives
sup

u∈[0,1]

∥µu − µ̃u∥TV ≤ Lπσ
√
|X ||A| ∥q −ΠD q̃∥∞ .

Therefore, by Lemma G.6, we get

G1 ≤
|X ||A|L2

πL
2
RL

2
Dσ

2(1− γ + ∥f∥∞)2

(1− γ)4D2
.

For G2, by Lemma G.5, we have

G2 ≤
L2
PL

2
Dσ

2

D2
.

And Lemma G.4 gives

G3 = O

(
D|X |2|A|∥f∥2∞L2

πσ
2 logH

λ2min(1− γ)4H

)
.

Plugging the above bounds on G1, G2, and G3 into gives the desired result.

Theorem 5.4 is immediate after combining Proposition G.3 with the contraction assumption of FPI.
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Proof of Theorem 5.4. In this proof, we omit the subscript of the total variation norm for simplicity. We denote Mk =
Mk,0 = {Mk,0

d }Dd=1 and µk := ΠDMk for k = 0, . . . ,K. Note that Mk = Γ̂kM0. By Equation (25) and the definition of
the equilibrium population measure µ̂, we have

E ∥µK − µ̂∥2 = E
∥∥∥ΠDΓ̂KM0 − µ̂

∥∥∥2 = E
∥∥∥ΠDΓ̂Π†

DµK−1 − ΓIPΓBRµ̂
∥∥∥2 , (26)

Then, by Young’s inequality, we have

E
∥∥∥ΠDΓ̂Π†

DµK−1 − ΓIPΓBRµ̂
∥∥∥2

=E
∥∥∥(ΠDΓ̂Π†

D − ΓIPΓBR

)
µK−1 + ΓIPΓBR(µK−1 − µ̂)

∥∥∥2
=(1 + 1/κ)E

∥∥∥(ΠDΓ̂Π†
D − ΓIPΓBR

)
µK−1

∥∥∥2 + (1 + κ)E ∥ΓIPΓBR(µK−1 − µ̂)∥2 .

Using Proposition G.3 for the first term and the contracting FPI assumption for the second term, we get

E
∥∥∥ΠDΓ̂Π†

DµK−1 − ΓIPΓBRµ̂
∥∥∥2 ≤(1 + 1/κ) ·O

(
D

H
+

1

D2

)
+ (1 + κ)(1− κ)2E ∥µK−1 − µ̂∥2

≤ 1

κ
·O

(
D

H
+

1

D2

)
+ (1− κ)E ∥µK−1 − µ̂∥2 .

Recursively applying the above inequality to Equation (26) gives

E ∥µK − µ̂∥2 ≤(1− κ)KE ∥µ0 − µ̂∥2 +
K∑

k=1

(1− κ)k 1
κ
·O

(
D

H
+

1

D2

)
= O

(
exp(−κK) +

D

κ2H
+

1

κ2D2

)
.

Therefore, to find an ϵ-approximation equilibrium population measure µK such that E∥µK − µ̂∥ ≤ ϵ, we need at most

K = O(κ−1 log ϵ−1), D = O(κ−1ϵ−1), H = O(κ−3ϵ−3 log ϵ−1).

G.5. Auxiliary Lemmas

The following lemmas address G3, G2, and G1 in Proposition G.3 respectively.

Lemma G.4 (Online learning approximation error). Suppose Assumption 5.3 holds. With step sizes of ατ , βτ ≍ 1/τ , for
any M ∈ P(X )U , we have

E
∥∥∥ΠD

(
Γ̃IPΓ̃BRΠD − Γ̂

)
M

∥∥∥2
TV

= O

(
D logH

H

)
.

Proof. We first denote µ̃ = {µ̃ud}Dd=1 := Γ̃IPΓ̃BRΠDM and M̃ = {M̃ud} := Γ̂M . Then, we know that µ̃ud is the
sationary distribution of the MDP dynamic with population measure ΠDM and policy Γπ(Γ̃BRΠDM), conditional on
U = ud at time 0. In other words, the measure argument of reward function and transition kernel is WΠDM(ud), and the
process is controlled by policy Γπ(Γ̃BRΠDM)(ud, ·), which is the optimal policy.

This is the same MDP in Algorithm 2 for label ud. Thus, by Anonymous (2024, Lemma 3), for any ud ∈ U , we have

E
∥∥∥µ̃ud − M̃ud

∥∥∥2
2
= O

(
∥f∥2∞L2σ2|X ||A| logH

λ2min(1− γ)4H

)
,
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where σ := n̂+ c1c
n̂
2/(1− c2), n̂ =

⌈
logc2 c

−1
1

⌉
, and λmin is the lower bound of the probability of visiting any state-action

pair under the steady distribution induced by any policy and kernel. Therefore, by Lemma G.1, we have

E
∥∥∥ΠD

(
µ̃− M̃

)∥∥∥2
TV
≤ E

∥∥∥µ̃− M̃∥∥∥2
TV
≤ D sup

ud∈U
E
∥∥∥µ̃ud − M̃ud

∥∥∥2
TV

≤D|X | sup
ud∈U

E
∥∥∥µ̃ud − M̃ud

∥∥∥2
2

=O

(
D∥f∥2∞L2σ2|X |2|A| logH

λ2min(1− γ)4H

)
.

where we recall the total variation of measure on finite space is equivalent to l1 norm of the density vector.

Lemma G.5 (Population discretization error). For any population distribution µ ∈ Punif([0, 1] × X ) and any D-class
Q-value function q̃ ∈ Q̃, we have ∥∥∥ΠDΓ̃IP (µ, q̃)− ΓIP (µ,ΠD q̃)

∥∥∥
TV

= O

(
1

D

)

Proof. We first denote ν̃ := Γ̃IP (µ, q̃) and ν := ΓIP (µ,ΠD q̃).

Let ν admits disintegration duνu(dx). By construction, for a.e. u ∈ Id, conditional on U = u, ν̃ud and νu are the invariant
measures of two Markov processes that follow the same policy Γπ(q̃

ud), but w.r.t. different neighborhood measure. By
Mitrophanov (2005, Corollary 3.1), for the same σ in Lemma G.4, we have for a.e. u ∈ Id,∥∥ν̃ud − νu

∥∥
TV
≤ σ sup

x,a
∥P (x,Wµ(ud), a)− P (x,Wµ(u), a)∥TV

≤ σLP ∥Wµ(ud)−Wµ(u)∥TV ≤
σLPLD

D

and thus ∥∥ΠDν̃ − ν
∥∥
TV

= sup
∥ϕ∥∞≤1

∣∣∣ ∫
[0,1]×X

ϕ(u, x)(ΠDν̃ − ν)(du, dx)
∣∣∣

≤
D∑

d=1

sup
∥ϕ∥∞≤1

∫
Iud

∣∣∣ ∫
X
ϕ(u, x)

(
ν̃ud(dx)− νu(dx)

)∣∣∣du
≤

D∑
d=1

∫
Iud

×X

∥∥ν̃ud − νu
∥∥
TV
du ≤ σLPLD

D

Lemma G.6 (Population discretization error). For any population distribution µ ∈ Punif([0, 1]×X ), let q∗ := ΓBRµ and
q̃∗ := Γ̃BRµ. We have

sup
µ
∥q∗ −ΠD q̃∗∥∞ = O

(
1

D

)
Proof. Denote value function associated with a policy ρ : [0, 1]×X → P(A) by

vρu0 (u1, u2, x) = E
[∑
τ≥0

γτf(X
ρu0
τ ,Wµ(u2), α

ρu0
τ )

∣∣∣Xρu0
0 = x, U = u1

]

and with a slight abuse of notation, we denote

qρu0 (u1, u2, x, a) := f(x,Wµ(u2), a) + γ⟨P (x,Wµ(u1), a), v
ρu0 (u1, u2, ·)⟩
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where ρu0
is to fix u0 as the first argument of ρ, i.e. ρu0

(x) = ρ(u0, x). In words, vρu0 (u1, u2, x) and qρu0 (u1, u2, x, a)
are generalization of typical value function and Q functions, where the the policy follows label u0, state transition follows
u1, and the reward follows u2.

Note that q∗ ∈ Q, and q̃∗ ∈ Q̃. Let π = Γπ(q∗), and by definition of ΓBR and Γ̃BR we know that

q∗(u, x, a) = qπu(u, u, x, a)⇐⇒ vπu(u, u, x) = sup
a∈A

q∗(u, x, a)

q̃∗(ud, x, a) = qπud (ud, ud, x, a)⇐⇒ vπud (ud, ud, x) = sup
a∈A

q̃∗(ud, x, a) 1 ≤ d ≤ D

Note that q∗ and q̃∗ coincide on the space U ×X ×A, by definition of ΓBR and Γ̃BR. On ([0, 1]\U)×X ×A, the Q-function
q∗ is strictly larger than ΠD q̃∗ by its optimality. With this in mind, we have

∥q∗ −ΠD q̃∗∥∞ = sup
x,a

sup
1≤d≤D

sup
u∈Iud

(
q∗(u, x, a)−ΠD q̃∗(u, x, a)

)
= sup

x,a
sup

1≤d≤D
sup

u∈Iud

(
qπu(u, u, x, a)− qπud (ud, ud, x, a)

)
.

where

qπu(u, u, x, a)− qπud (ud, ud, x, a) ≤
∣∣∣qπu(u, u, x, a)− qπu(u, ud, x, a)

∣∣∣
+
∣∣∣qπu(u, ud, x, a)− qπu(ud, ud, x, a)

∣∣∣
+
(
qπu(ud, ud, x, a)− qπud (ud, ud, x, a)

)
= I + II + III.

Term I. we use the Lipschitzness of the reward function, and obtain

I ≤
∣∣∣f(x,Wµ(u), a)− f(x,Wµ(ud), a)

∣∣∣+ γ
∣∣∣⟨P (x,Wµ(u), a), vπu(u, u, ·)− vπu(u, ud, ·)⟩

∣∣∣
≤ Lf∥Wµ(u)−Wµ(ud)∥TV

+ γ

〈
P (x,Wµ(u), a) , E

[∑
τ≥0

γτ
∣∣∣f(Xπu

τ ,Wµ(u), απu
τ )− f(Xπu

τ ,Wµ(ud), α
πu
τ )

∣∣∣∣∣∣∣Xπu
0 = ·, U = u

]〉

≤ Lf∥Wµ(u)−Wµ(ud)∥TV + γ

〈
P (x,Wµ(u), a) , E

[∑
τ≥0

γτLf∥Wµ(u)−Wµ(ud)∥TV

∣∣∣∣Xπu
0 = ·, U = u

]〉
≤ Lf

1− γ
∥Wµ(u)−Wµ(ud)∥TV

≤ LfLd

(1− γ)D

Term II. we first define iteratively the measure of state-action pair at time t ≥ 1 under any policy ρu : X → P(A) as

P ρu

t (x0,m, a0) := L(Xρu

t , αρu

t |X
ρu

0 = x0, α
ρu

0 = a0)

=

∫
X 2×A2

[
δxtδatρu,xt(dat)P (xt−1,m, at−1)(dxt)

]
P ρu

t−1(x0,m, a0)(dxt−1, dat−1)

∈ P(X ×A)

we claim that for any ρu : X → P(A), any (x0, a0) ∈ X ×A, any m1,m2 ∈ P(X ) and any time t ≥ 1,

∥P ρu

t (x0,m1, a0)− P ρu

t (x0,m2, a0)∥TV ≤ tLP ∥m1 −m2∥TV (27)
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It is trivial that

P ρu

1 (x0,m, a0) = P (x0,m, a0)

is uniformly Lipschitz in measure argument. Assuming equation (27) holds for t− 1, we now show it holds for t with the
add and subtract trick again.

∥P ρu

t (x0,m1, a0)− P ρu

t (x0,m2, a0)∥TV

≤ sup
∥ϕ∥∞≤1

∫
A×X 2

ϕ(at, xt)ρu,xt(dat)

[
Pxt−1,m1,at−1(dxt)P

ρu

t−1(x0,m1, a0)(dxt−1, dat−1)

− Pxt−1,m2,at−1
(dxt)P

ρu

t−1(x0,m2, a0)(dxt−1, dat−1)

]
≤ sup

∥ϕ∥∞≤1

∫
A×X 2

ϕ(at, xt)ρu,xt
(dat)

[
Pxt−1,m1,at−1

− Pxt−1,m2,at−1

]
(dxt)P

ρu

t−1(x0,m1, a0)(dxt−1, dat−1)

+ sup
∥ϕ∥∞≤1

∫
A×X 2

ϕ(at, xt)ρu,xt(dat)Pxt−1,m2,at−1(dxt)

[
P ρu

t−1(x0,m1, a0)− P ρu

t−1(x0,m2, a0)

]
(dxt−1, dat−1)

≤ (t− 1)LP ∥m1 −m2∥TV + LP ∥m1 −m2∥TV

= tLP ∥m1 −m2∥TV

With this claim, we have

II ≤
∣∣∣qπu(u, ud, x, a)− qπu(ud, ud, x, a)

∣∣∣
≤

∑
t≥0

γt
∣∣∣∣〈Pπu

t (x,Wµ(u), a)− Pπu
t (x,Wµ(ud), a) , f(·,Wµ(ud), ·)

〉∣∣∣∣
≤

∑
t≥0

γt∥f∥∞∥Pπu
t (x,Wµ(u), a)− Pπu

t (x,Wµ(ud), a)∥TV

≤ LP ∥f∥∞∥Wµ(u)−Wµ(ud)∥TV

∑
t≥0

tγt

≤ ∥f∥∞LPLD

(1− γ)2D

Term III.

III = qπu(ud, ud, x, a)− qπud (ud, ud, x, a) ≤ 0

is immediate as πud
is the optimizer of vπud (ud, ud, ·).

Finally we conclude

∥q∗ −ΠD q̃∗∥∞ ≤
LfLD(1− γ + ∥f∥∞)

(1− γ)2D

H. Experiment Setup
H.1. Experiment 1: Flocking-Graphon

The flocking graphon game (Lacker & Soret, 2022) studies the flocking behavior in a system where each player makes
decisions regarding velocity control. The transition dynamic is a continuous time state process, which is given by:

dxt = αtdt+ σdBt
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where, xt takes value in the one-dimensional space X := R. αt is the velocity control at time t, and we usually consider it
to be a closed loop control, i.e. αt = αt(x) for function α, which represents the velocity at position x at time t. Bt is a
one-dimensional Brownian motion. The player aims to optimize the following objective

JW (µ, α) := −E
[ ∫ T

0

α2
tdt+ c

∣∣xT −Gµ(U)
∣∣2]

where c > 0 is a constant, and

Gµ(u) := ⟨WµT (u), Id⟩ =
∫
[0,1]×R

W (u, v)xµT (dv, dx)

with Id being the identity mapping. Gµ(u) is interpreted as the centroid of the population over the space domain X . More
specifically, Gµ(u) is the average of the state distribution of the population µ, weighted from the perspective of player with
label u. Intuitively, the running cost arises from change in the velocity, and the terminal cost is associated with deviation
from the centroid at terminal time.

H.2. Experiment 2: SIS-Graphon

(Cui & Koeppl, 2022) Consider a game that models pandemic evolution. It admits state space X = {xS , xI} where xS
represents a safe state, and xI represents an infection state. The action space is taken to be A = {aU , aD}, where aU
represents keeping interaction with others and aD represents taking a quarantine. The terminal time is set to T = 50. The
transition probability is

P(xS |xI ,m, a) =
1

2
∀(m, a) ∈M+(X )×A

P(xI |xS ,m, aU ) =
4

5
m(xI) ∀m ∈M+(X )

P(xI |xS ,m, aD) = 0 ∀m ∈M+(X )

An infected agent may turn safe with half probability each time step, regardless of the action. The probability a safe agent is
infected is proportion to the infected individuals in her neighborhood when she keep interaction with others, and is 0 when
she takes a quarantine. The reward function is given by

f(x,m, a) = −2 · 1xI
(x)− 0.5 · 1aD

(a)

An agent takes cost from both being infected and taking quarantine action.

H.3. Experiment 3: Investment-Graphon

(Cui & Koeppl, 2022) In Investment-Graphon game, The terminal time is set to T = 50. Each agent is viewed as a firm, and
let X = {0, 1, . . . , 9} be the quality of products this firm provides. With action space given by A = {aI , aO}, the transition
kernel is defined by

P(x+ 1|x,m, aI) =
9− x
10

∀m ∈M+(X )

P(x|x,m, aI) =
1 + x

10
∀m ∈M+(X )

P(x|x,m, aO) = 1 ∀m ∈M+(X )

We interpret aI as investment, and aO as not investing. A firm may improve the product quality by investing, and the
probability of a successful investment decrease as the current quality is already high. Initially, every firm starts from quality
0. The reward function is given by

f(x,m, a) =
0.3x

1 +
∑

x′∈X x
′m(x′)

− 2 · 1aI
(a)

A firm’s profit is proportion to the quality of product, and decrease with the average product quality within its neighborhood.
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I. Experiment Results
In this section, we present detailed numerical results for three graphon games utilized in the main body. The experiment
results include algorithm performance (convergene gap, W1-distance, exploitability) and GMFE.

Figure 3. Flocking-Graphon: Algorithm performance. We demonstrate the convergence gap (top), W1-distance (middle) and exploitabil-
ity (bottom) corresponding to four types of graphs. The exploitability indicates how an agent can improve be deviating from the policy
used by the rest of the population. Mathematically, the exploitability is calculated as |Jµ

π − Jµ
π∗(µ)|. It measures the gap between the

policy adopted by the population and the best policy that an agent can achieve in response to the population state.
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Figure 4. Flocking-Graphon: GMFE. Top: The velocity control at position x = 0. The x-axis denotes the time horizon and the y-axis
denotes the velocity at equilibrium. The color bar denotes the label state. Bottom: The expected position x across the time. It can be
regarded as the centroid of the population.

Figure 5. SIS-Graphon: Algorithm performance. We demonstrate the convergence gap (top), W1-distance (middle) and exploitability
(bottom) corresponding to four types of graphs.
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Figure 6. SIS-Graphon: GMFE. Top: The probability of taking precautions when healthy. The results for graphs Wunif , Wrank and Wer

is consistent with (Cui & Koeppl, 2022). We add the results for graph Wthresh. It is shown that the GMFE with Wthresh is similar to
Wunif . Bottom: The population being infected. Agents with a higher u have less connections with others. It means they are less likely
infected by the population in a comparison to others. Thus, they take less precautions.

Figure 7. Invest-Graphon: Algorithm performance. We demonstrate the convergence gap (top), W1-distance (middle) and exploitability
(bottom) corresponding to four types of graphs.
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Figure 8. Invest-Graphon: GMFE. Top: the probability of investing on product quality when x = 0. Bottom: The expected product
quality across the time.
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