

Motivation

Goal: find a universal robust strategy that minimizes the collision probability (performs well) across all environments.

Questions:

Can an agent expedite the process of learning its own near-optimal policy by leveraging information from other agents with potentially different environments?

Background

Markov Decision Process (MDP)

- S: state space (continuous)
- \mathcal{A} : the action space (continuous)
- $r: \mathcal{S} \times \mathcal{A} \to [0, R]$
- $\gamma \in (0, 1)$: discounted factor
- P: Markov transition kernel
- $P_a(s, s')$: probability of transiting
- from state s to s' following action a.

SARSA with Linear Function Approximation

SARSA: on-policy algorithms may potentially yield more reliable convergence performance. For a given $\phi : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^d$, we approximate the Q-value function as $Q_{\theta}(s, a) = \phi(s, a)^T \theta$.

Algorithm 1 SARSA 1: Initialization:

- 2: θ_0, x_0, R, ϕ_i , for i = 1, 2, ..., d
- 3: Method:

10:

11: end for

- 4: $\pi_{\theta_0} \leftarrow \Gamma(\phi^T \theta_0)$
- 5: Choose a_0 according to π_{θ_0}
- 6: for t = 1, 2, ... do
- Observe x_t and $r(x_{t-1}, a_{t-1})$
- Choose a_t according to $\pi_{\theta_{t-1}}$
- $\theta_t \leftarrow \operatorname{proj}_{2,R}(\theta_{t-1} + \alpha_t g_{t-1}(\theta_{t-1}))$ Policy improvement: $\pi_{\theta_t} \leftarrow \Gamma(\phi^T \theta_t)$
- $g_t(\theta_t) = \phi(x_t, a_t) \Delta_t$, where $r(x_t, a_t) + \phi^T(x_{t+1}, a_{t+1})\theta_t$
- The projection step

 $\operatorname{proj}_{2,R}(\theta) := \arg \min_{\theta': \|\theta'\|_2 \le R} \|\theta - \theta'\|_2.$

which is to control the norm of the gradient $g_t(\theta_t)$.

• Γ is the policy improvement operator, which satisfies the Lipchitz continous condition such as the softmax function.

Assumption: The behavior policy $\pi_{\theta} = \Gamma(\phi^T \theta)$ is Lipschitz with respect to any θ , which is $|\pi_{\theta_1}(a \mid x) - \pi_{\theta_2}(a \mid x)| \le C \|\theta_1 - \theta_2\|_2$

holds for all $(x, a) \in \mathcal{X} \times \mathcal{A}$ and C is a Lipschitz constant.

https://arxiv.org/pdf/2401.15273

FINITE-TIME ANALYSIS OF ON-POLICY HETEROGENEOUS FEDERATED REINFORCEMENT LEARNING

Chengyu Zhang¹ Han Wang¹ Aritra Mitra² James Anderson¹

¹Columbia University

²North Carolina State University

Our heterogeneous FRL problem

Our proposed algorithm FedSARSA

Difficulties

• We propose an on-policy heterogeneous FRL algorithm called FedSARSA.

$$e \Delta_t = \\ t - \phi^T(x_t, a_t)\theta_t.$$

More difficult than this!

Where K is the number of local updates, T is the number of total iterations. Main Takeaways: In a low-heterogeneity regime, there is a clear benefit of collaboration.

Main Takeaways: N times faster than independent training!

Stronger correlations

Table 1: Comparison of finite-time analysis for value-based FRL methods. LSP and LFA represent linear speedup and linear function approximation under the Markovian sampling setting; Pred and Plan represent prediction (policy evaluation) and planning (policy optimization) tasks, respectively.

Work	Hetero- geneity	LSP	LFA	Markovian Sampling	Task	Behavior Policy
Doan et al. (2019)	×	×	✓	×	Pred	Fixed
Jin et al. (2022)	✓	×	×	×	Plan	Fixed
Khodadadian et al. (2022)	×	~	~	~	Pred & Plan	Fixed
Shen et al. (2023)	×	✓ 1	~	~	Plan	Adaptive
Wang et al. (2023a)	✓	~	~	~	Pred	Fixed
Woo et al. (2023)	×	✓	×	 Image: A start of the start of	Plan	Fixed
Our work	/	v	1	 Image: A start of the start of	Pred & Plan	Adaptive

Main Results

Simulations

Experiments: Synthetic MDPs with |S| = 100, an action space of size |A| = 100, a feature space of dimension d = 25, and set $\gamma = 0.2$ and R = 10. The synchronization period is set to K = 10.

Figure 1: Performance of FedSARSA under Markovian sampling.

Comparison