FINITE-TIME ANALYSIS OF ON-POLICY HETEROGENEOUS FEDERATED REINFORCEMENT LEARNING

Chengyu Zhang¹ Han Wang¹ Aritra Mitra²

¹Columbia University

²North Carolina State University

Goal: find a universal robust strategy that minimizes the collision probability (performs well) across all environments.

Motivation

Questions:

Can an agent expedite the process of learning its own near-optimal policy by leveraging information from other agents with potentially different environments?

Background

- 2: θ_0, x_0, R, ϕ_i , for $i = 1, 2, \ldots, d$
- 3: Method:

Markov Decision Process (MDP)

- \cdot S: state space (continuous)
- \blacksquare \blacktriangle : the action space (continuous)
- $r : \mathcal{S} \times \mathcal{A} \rightarrow [0,R]$
- $\gamma \in (0,1)$: discounted factor
- *P*: Markov transition kernel
- $P_a(s, s')$: probability of transiting from state s to s' following action a .

which is to control the norm of the gradient $g_t(\theta_t)$.

SARSA with Linear Function Approximation

SARSA: on-policy algorithms may potentially yield more reliable convergence performance. For a given ϕ : $\mathcal{S} \times \mathcal{A}$ $\;\rightarrow$ \mathbb{R}^d , we approximate the Q-value function as $Q_\theta(s, a) = \; \phi(s, a)^T \theta.$

Algorithm 1 SARSA : Initialization:

> Γ is the policy improvement operator, which satisfies the Lipchitz continous condition such as the softmax function.

 ${\sf Assumption:}$ The behavior policy $\pi_{\theta} = \Gamma(\phi^T\theta)$ is Lipschitz with respect to any $\theta,$ which is $|\pi_{\theta_1}(a \mid x) - \pi_{\theta_2}(a \mid x)| \leq C ||\theta_1 - \theta_2||_2$

holds for all $(x, a) \in \mathcal{X} \times \mathcal{A}$ and *C* is a Lipschitz constant.

Where *K* is the number of local updates, *T* is the number of total iterations. Main Takeaways: In a low-heterogeneity regime, there is a clear benefit of collaboration.

Main Takeaways: N times faster than independent training!

Stronger correlations

Table 1: Comparison of finite-time analysis for value-based FRL methods. LSP and LFA represent linear speedup and linear function approximation under the Markovian sampling setting; Pred and Plan represent prediction (policy evaluation) and planning (policy optimization) tasks, respectively.

11: end for

- 4: $\pi_{\theta_0} \leftarrow \Gamma(\phi^T \theta_0)$
- 5: Choose a_0 according to π_{θ_0}
- 6: for $t = 1, 2, ...$ do
- Observe x_t and $r(x_{t-1}, a_{t-1})$
- Choose a_t according to $\pi_{\theta_{t-1}}$
- $\theta_t \leftarrow \text{proj}_{2,R}(\theta_{t-1} + \alpha_t g_{t-1}(\theta_{t-1}))$ 10: Policy improvement: $\pi_{\theta_t} \leftarrow \Gamma(\phi^T \theta_t)$
- $g_t(\theta_t) = \phi(x_t, a_t) \Delta_t$, where $\Delta_t =$ $r(x_t, a_t) + \phi^T(x_{t+1}, a_{t+1})\theta_t - \phi$
- The projection step

 $\text{proj}_{2,R}(\theta) := \arg \min_{\theta \in \mathbb{R}^d}$ θ' : $\|\overline{\theta'}\|_2 \leq R$

$$
\dot{A}_t = \frac{1}{\phi^T(x_t, a_t)\theta_t}.
$$

 $\|\theta - \theta'\|_2.$

James Anderson¹

More difficult than this!

Our heterogeneous FRL problem

Our proposed algorithm FedSARSA

Difficulties

• We propose an on-policy heterogeneous FRL algorithm called FedSARSA.

-
-
-

Main Results

Simulations

Experiments: Synthetic MDPs with $|S| = 100$, an action space of size $|A| = 100$, a feature space of dimension $d = 25$, and set $\gamma = 0.2$ and $R = 10$. The synchronization period is set to $K = 10$.

Figure 1: Performance of FedSARSA under Markovian sampling.

Comparison

