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Introduction
This work explores single-agent model-free online learning for mean
field games (MFGs), where the impact of other agents is encapsu-
lated in the mean field, i.e., the population distribution. Solving an
MFG aims to find an equilibrium policy and its induced population dis-
tribution such that no individual agent can improve its performance by
unilaterally deviating from the equilibrium.

Limitations of existing methods:
▶ Fixed-point iteration (FPI) and its variants calculate the best re-

sponses (BR) and the induced population (IP) distribution sequen-
tially, impeding parallel computing and increasing the computa-
tional complexity.

▶ Calculating IPs typically requires the knowledge of the transition
dynamics, limiting the use of model-free methods.

▶ Without prior knowledge, direct observability of population dynam-
ics is required, restricting the feasibility of learning with a single
online agent on a single sample trajectory.

Can a single online agent efficiently learn the equilibria of
mean field games without any prior knowledge?

Contributions
1. Develop QM iteration (QMI), a novel single-agent model-free

scheme for learning MFGs using online samples without prior
knowledge of the environment or population.

2. QMI updates the BR and IP estimates simultaneously using the
same batch of online observations, rendering it sample-efficient
and parallelizable.

3. Two variants, off-policy and on-policy QMI, are proposed, each
with distinct features.

4. Finite time sample complexity guarantees are provided.

Illustration:

Off-Policy and On-Policy QMI

Pseudocode:
1: Input: initial value functions Q−1,T = Q0 and M−1,T = M0; initial

state s0; option off-policy or on-policy
2: for k = 0,1, ...,K do
3: Qk ,0 = Qk−1,T ,Mk ,0 = Mk−1,T
4: πk ,0 = Γπ(Qk ,0)
5: for t = 0,1, . . . ,T do
6: sample one Markovian observation tuple (st,at, st+1,at+1) follow-

ing policy πk ,t
7: observe the reward rk ,t = r (st,at,Mk ,0)
8: Qk ,t+1(st,at)=Qk ,t(st,at)−αt(Qk ,t(st,at)− rk ,t −γQk ,t(st+1,at+1))
9: Mk ,t+1 = Mk ,t − βt(Mk ,t(st)− δst+1)

10: if off-policy then
11: πk ,t+1 = πk ,0
12: else if on-policy then
13: πk ,t+1 = Γπ

(
mix

(
{Qk ,l}t+1

l=0

))
14: end if
15: end for
16: end for
17: return QK ,T ,MK ,T

Learning process:

Comparison of two variants:
Off-Policy On-Policy

Behavior policy within
an outer iteration fixed adaptive

Policy type greedy soft
MFNE original regularized
Sample efficiency
boost mechanism parallel concurrent

Population-dependent
transition kernels % "

Theorem (Sample complexity of QMI)

Suppose the underlying MDP is ergodic and MFG is (1 − κ)-
contractive, as well as the transition kernel and policy operator are
L-Lipschitz continuous for off- and on-policy QMI, respectively. Let µ∗

be the MFNE population distribution. Then the algorithm returns an
ϵ-approximate MFNEwith the number of iterations being at most

K = O
(
κ−1 log ϵ−1) , T = C · O

(
κ−2ϵ−2 log ϵ−1) ,

where

C ≤ SAR2L2σ2

λ2
min(1 − γ)5

.

Numerical Experiments

Ring road speed control:
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Routing game on the Sioux Falls network:
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Learned population distributions:
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(a) Ring road
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(b) Sioux Falls network
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