Uniform Distribution | U(a,b) | a,b∈R | F(x)=⎩⎨⎧0,b−ax−a,1,x<a,a≤x≤b,x>b. | f(x)={b−a1,0,a≤x≤b,otherwise. | 2a+b | 12(b−a)2 | (b−a)tetb−eta | |
Bernoulli Distribution | / | p∈[0,1] | F(x)=⎩⎨⎧0,q=1−p,1,x<0,0≤x≤1,x>1. | p(n)={p,q:=1−p,n=1,,n=0. | p | pq | q+pet | |
Binomial Distribution | B(n,p) | n∈N,p∈[0,1] | / | p(k)=(kn)pk(1−p)n−k | np | npq | (q+pet)n | |
Poisson Distribution | / | λ>0 | / | p(n)=e−λn!λn | λ | λ | exp(λ(et−1)) | exp(λ(eit−1)) |
Exponential Distribution | / | λ>0 | 1−e−λx | f(n)={λe−λx,0,x≥0,x<0 | λ1 | λ21 | λ/(λ−t),t<λ | λ/(λ−it) |
Normal Distribution | N(μ,σ2) | μ∈R,σ2∈R+ | / | f(x)=σ2π1e−21(σx−μ)2 | μ | σ2 | eμt+σ2t2/2 | eitμ−σ2t2/2 |
Gamma Distribution | / | α,λ>0 | / | f(x)={Γ(α)λe−λx(λx)α−1,0,x≥0,x<0 | α/λ | α/λ2 | (λ−tλ)α,t<λ | |
Beta Distribution | / | a,b>0 | / | f(x)=Γ(a)Γ(b)Γ(a+b)xa−1(1−x)b−1 | a+ba | (a+b)2(a+b+1)ab | Γ(a)Γ(b)Γ(a+b)∫01xa−1(1−x)b−1etxdx | |
Chi-Square Distribution | χn2 | n | / | f(x)=2Γ(n/2)e−x/2(x/2)n/2−1,x≥0 | n | 2n | (1−2t)−n/2 | |
Wishart Distribution | | | | | | | | |
t Distribution | / | n∈N | / | nπΓ(2n)Γ(2n+1)(1+nx2)−2n+1 | 0 | n−2n | Undefined | |
F Distribution | / | n,m∈N | / | / | m/(m−2) | n(m−2)2(m−4)2m2(m+n−2) | Undefined | |
Geometric Distribution | / | p∈[0,1] | F(n)=1−qn | p(n)=pqn−1 | 1/p | q/p2 | 1−qetpet, et<1/q | |
Hypergeometric Distribution | / | N∈N,M,n∈[N] | / | p(k)=(kN)(kM)(n−kN−M) | NnM | N2(N−1)nM(N−n)(N−M) | / | |
Cauchy Distribution | / | a | π1(arctanax+2π) | π1x2+a2a | Undefined | Undefined | Undefined | |
Discrete Power Law Distribution | / | Discrete: α∈R++ | F(k)=1−1/(k+1)α | p(k)=1/kα−1/(k+1)α | Discrete: ∑k=1∞1/kα | Discrete: ∑k=1∞2k1−α−k−α−(∑k=1∞k−α)2 | Discrete: 1+(et−1)∑k=0∞etk(k+1)−α | |
Continuous Power Law Distribution | / | Continuous: α,c∈R++, β=cα | F(x)=1−cα/xα for x≥c | f(x)=αcα/xα+1 | Continuous: α−1α | Continuous: (α−1)2(α−2)α | / | |
Dirac Distribution | δx0 | x0∈R | F(x)=1{x≥x0} | p(x)=δ(x−x0) | x0 | 0 | ex0t | |
Laplace Distribution | | | | | | | | |